

# FSC-BT966

### **5.0 Dual Mode Bluetooth Module Datasheet**

Version 1.4



### Copyright © 2013-2021 Feasycom Technology. All Rights Reserved.

Feasycom Technology reserves the right to make corrections, modifications, and other changes to its products, documentation and services at anytime. Customers should obtain the newest relevant information before placing orders. To minimize customer product risks, customers should provide adequate design and operating safeguards. Without written permission from Feasycom Technology, reproduction, transfer, distribution or storage of part or all of the contents in this document in any form is prohibited.

### **Revision History**

| Version | Data       | Notes                                           |           |
|---------|------------|-------------------------------------------------|-----------|
| 1.0     | 2020/04/11 | Initial Version                                 | Fish      |
| 1.1     | 2020/06/01 | Add codec chip                                  | Devin Wan |
| 1.2     | 2020/06/11 | Description Update                              | Devin Wan |
| 1.3     | 2021/02/19 | Update Features description and module pictures | Fish      |
| 1.4     | 2021/03/22 | Update chip model                               | Fish      |
|         |            |                                                 |           |

Skenn rechnology Co-lid

### **Contact Us**

#### Shenzhen Feasycom Technology Co.,LTD

Email: sales@feasycom.com

Address: Room 2004-2005,20th Floor,Huichao Technology Building,Jinhai Road, Xixiang ,Baoan District,Shenzhen,518100,China. Tel: 86-755-27924639,86-755-23062695



### Contents

| 1. | INTRODUCTION                                        |    |
|----|-----------------------------------------------------|----|
| 2. | GENERAL SPECIFICATION                               | 5  |
| 3. | HARDWARE SPECIFICATION                              | 6  |
|    | 3.1 BLOCK DIAGRAM AND PIN DIAGRAM                   | 6  |
|    | 3.2 PIN DEFINITION DESCRIPTIONS                     | 7  |
| 4. | PHYSICAL INTERFACE                                  | 9  |
|    |                                                     | 0  |
|    | 4.1 POWER MANAGEMENT                                | 9  |
|    | 4.2 RESEL                                           | 9  |
|    | 4.3 GENERAL PURPOSE ANALOG IO                       | 9  |
|    | 4.4 GENERAL PORPOSE DIGITAL IO                      | 9  |
|    |                                                     | 9  |
|    | 4.0 SERIAL INTERFACES                               | 10 |
|    | 4.6.1 VART Interface                                | 10 |
|    | 4.6.2 FC Interface                                  | 11 |
|    | 4.6.3 125 merjace                                   | 11 |
| 5. | ELECTRICAL CHARACTERISTICS                          |    |
|    | 5.1 Absolute Maximum Ratings                        |    |
|    | 5.2 RECOMMENDED OPERATING CONDITIONS                |    |
|    | 5.3 INPUT/OUTPUT TERMINAL CHARACTERISTICS           | 12 |
|    | 5.3.1 Audio features                                |    |
|    | 5.3.2 Digital I/O Characteristics                   | 16 |
|    | 5.4 CURRENT CONSUMPTIONS                            | 17 |
| 6. | MSL &ESD PROTECTION                                 |    |
| 7  |                                                     | 10 |
| 7. |                                                     |    |
| 8. | MECHANICAL DETAILS                                  | 19 |
|    | 8.1 MECHANICAL DETAILS                              | 19 |
| 9. | HARDWARE INTEGRATION SUGGESTIONS                    | 20 |
|    | 9.1 SOLDERING RECOMMENDATIONS                       | 20 |
|    | 9.2 LAYOUT GUIDEUNES (INTERNAL ANTENNA)             | 20 |
|    | 9.3 LAVOLT GUIDELINES (ITTERNAL ANTENNA)            | 20 |
|    | 9.3.1 Antenna Connection and Grounding Plane Design | 21 |
| 10 | PRODUCT PACKAGING INFORMATION                       | 23 |
| 10 |                                                     | 23 |
|    | 10.1 DEFAULTPACKING                                 | 23 |
|    | 10.2 PACKING BOX(OPTIONAL)                          | 24 |
| 11 | . APPLICATION SCHEMATIC                             | 25 |



### **1. INTRODUCTION**

#### **Overview**

FSC-BT966 is a Bluetooth 5.0 dual-mode module which is based on Bluetooth chip CP008, it. It provides a Bluetooth BR/EDR and LE fully compliant system for audio and data communication.

FSC-BT966 integrates an application processor with embedded flash memory, a high-performance stereo codec, a power management subsystem, I2S, SPI, LED drivers, PWM, and ADC in a SoC IC. The dual-core architecture with flash memory enables manufacturers to easily differentiate their products with new features without extending development cycles.

By default, FSC-BT966 module is equipped with powerful and easy-to-use Feasycom firmware. It's easy-to-use and completely encapsulated. Feasycom firmware enables users to access Bluetooth functionality with simple AT commands delivered to the module over serial interface it's just like a Bluetooth modem.

Therefore, FSC-BT966 provides an ideal solution for developers who want to integrate Bluetooth wireless technology into their design.

### **Features**

- Complies with Bluetooth Core Specification version
  5.0 including BR/EDR/BLE
- Support HFP/HSP, A2DP, AVRCP, PBAP, MAP, SPP, GAT T profiles
- Broadcom proprietary LE data rate up to 2 Mbps
- BLE HID profile version 1.00 compliant
- Bluetooth Device ID profile version 1.3 compliant
- Supports Generic Access Profile (GAP)
- Supports Adaptive Frequency Hopping (AFH)

- Excellent receiver sensitivity
- Integrated ARM Cortex-M3 microprocessor core
- On-chip power-on reset (POR)
- Integrated low dropout regulators (LDO)
- PCM/I2S Interface
- I2C interface (compatible with NXP I2C slaves)
- RoHS compliant
- Ambient temperature of operation -30°C to +85°C

### Application

- Bluetooth speakers
- Home automation
- Point-of-sale input devices
- Blood pressure monitors
- "Find me" devices
- Heart rate monitors
- Thermometers

## Module picture as below showing



Figure 1: FSC-BT966 Picture



### 2. General Specification

#### Table 1: General Specifications

| Categories         | Features                   | Implementation                                     |  |  |
|--------------------|----------------------------|----------------------------------------------------|--|--|
|                    | On-board chip              | CP008                                              |  |  |
|                    | Bluetooth Version          | Bluetooth V5.0 Dual-mode                           |  |  |
| Wireless           | Frequency                  | 2.402 - 2.480 GHz                                  |  |  |
| Specification      | Transmit Power             | +12 dBm (Maximum)                                  |  |  |
|                    | Receive Sensitivity        | -93.5 dBm (Typical)                                |  |  |
|                    | Raw Data Rates (Air)       | 3 Mbps (Classic BT - BR/EDR)                       |  |  |
|                    | Modulation                 | GFSK, π/4-DQPSK, 8-DPSK                            |  |  |
|                    |                            | TX, RX, CTS, RTS                                   |  |  |
|                    |                            | General Purpose I/O                                |  |  |
|                    | UART Interface             | Default 115200,N,8,1                               |  |  |
| J                  |                            | Baudrate support from 1200 to 921600               |  |  |
| Host Interface and | R                          | 5,6,7,8 data bit character                         |  |  |
| Peripherals        | 124                        | 6 (maximum – configurable) lines                   |  |  |
|                    | GPIO                       | O/P drive strength (8 mA at 3.3V)                  |  |  |
|                    | $\gamma_{\mathcal{A}}$     | All of these GPIOs can be configured as ADC inputs |  |  |
|                    | I <sup>2</sup> C Interface | Up to 400 kbps                                     |  |  |
|                    | S                          | Master I <sup>2</sup> C interface                  |  |  |
| Supply Voltage     | Supply                     | VDD: 3.0 ~ 3.6V                                    |  |  |
| Physical           | Dimensions                 | 13mm(W) X 26.9mm(L) X 2.0mm(H); Pad Pitch 1mm      |  |  |
| Environmontal      | Operating                  | -30°C to +85°C                                     |  |  |
| Linnonmenta        | Storage                    | -40°C to +105°C                                    |  |  |
| Miscellanoous      | Lead Free                  | Lead-free and RoHS compliant                       |  |  |
| wiscellaneous      | Warranty                   | One Year                                           |  |  |
| Humidity           |                            | 10% ~ 90% non-condensing                           |  |  |
| MSL grade:         |                            | MSL 3                                              |  |  |
| ESD grada          |                            | Human Body Model: Class 2 2kV (all pins)           |  |  |
| ESD BLADE:         |                            | Charged Device Model: Class III 500 V (all pins)   |  |  |
|                    |                            |                                                    |  |  |



### 3. HARDWARE SPECIFICATION

### 3.1 Block Diagram and PIN Diagram







Figure 3: FSC-BT966 PIN Diagram (Top View)

#### **PIN Definition Descriptions** 3.2

#### Table 2: Pin definition

| 3.2 PIN Definition Descriptions |                  |      |                                                      |  |  |  |
|---------------------------------|------------------|------|------------------------------------------------------|--|--|--|
| Table 2: Pin definition         |                  |      |                                                      |  |  |  |
| Pin                             | Pin Name         | Туре | Pin Descriptions Notes                               |  |  |  |
| 1                               | UART_TX          | 0    | UART Data output                                     |  |  |  |
|                                 |                  |      | Alternative Function: Debug TX                       |  |  |  |
| 2                               | UART_RX          | I    | UART Data input                                      |  |  |  |
|                                 |                  |      | Alternative Function: Debug RX                       |  |  |  |
| 3                               | UART_CTS         | I/O  | UART Clear to Send, active low                       |  |  |  |
| 4                               | UART_RTS         | I/O  | UART Request to Send, active low                     |  |  |  |
| 5,28                            | I2S_CLK          | I/O  | I2S clock                                            |  |  |  |
| 6,27                            | I2S_DO           | 0    | I2S synchronous data output                          |  |  |  |
| 7                               | I2S_DI           | I.   | I2S synchronous data input                           |  |  |  |
| 8                               | I2S_WS           | I/O  | I2S word select                                      |  |  |  |
| 9                               | MIC_2N/LINEIN_2L | I    | Multifunction Analog Input,                          |  |  |  |
|                                 |                  |      | or Single-ended configuration: MIC 2 or Line 2 left  |  |  |  |
|                                 |                  |      | or Differential configuration: MIC 2 negative        |  |  |  |
| 10                              | MIC_2P/LINEIN_2R | I.   | Multifunction Analog Input,                          |  |  |  |
|                                 |                  |      | or Single-ended configuration: MIC 2 or Line 2 right |  |  |  |
|                                 |                  |      | or Differential configuration: MIC 2 positive        |  |  |  |

#### **FSC-BT966** Datasheet



| 11 | DECET            |       |                                                                 |
|----|------------------|-------|-----------------------------------------------------------------|
| 11 | RESET            | 1     | Active-low reset input                                          |
| 12 | VDD_3V3          | I/O   | Power supply voltage 3.0V~ 3.6V                                 |
| 13 | GND              | Vss   | Power Ground                                                    |
| 14 | BOOT             | I     | NC (Do not connect to any pin)                                  |
| 15 | DEBUG            | I     | NC (Do not connect to any pin)                                  |
| 16 | MIC_BIAS         | 0     | Microphone bias voltage output                                  |
| 17 | MIC_1N/LINEIN_1L | I     | Multifunction Analog Input,                                     |
|    |                  |       | or Single-ended configuration: MIC 1 or Line 1 left             |
|    |                  |       | or Differential configuration: MIC 1 negative                   |
| 18 | MIC 1P/LINEIN 1R | I     | Multifunction Analog Input,                                     |
|    |                  |       | or Single-ended configuration: MIC 1 or Line 1 right            |
|    |                  |       | or Differential configuration: MIC 1 positive                   |
| 19 | HP LOUT          | 0     | Left high power output driver                                   |
| 20 | HP ROUT          | 0     | Bight high power output driver                                  |
| 21 | GND              | Vss   | Power Ground                                                    |
| 22 | GND S            | Vss   | Power Ground                                                    |
| 22 |                  | 0     | Left line output                                                |
| 24 |                  | 0     | Right line output                                               |
| 25 |                  | 1/0   |                                                                 |
| 25 | ///01/1102       | , , U | Alternative Function: Programmable input/output                 |
| 26 |                  | 1/0   |                                                                 |
| 20 | AI02/1103        |       | Alternative Eulerion: Programmable input/output                 |
| 20 | DIOC             | 1/0   |                                                                 |
| 29 | PIOD             | 1/0   | Alternative Eurotian 120 Social Clock input/output              |
| 20 | 207              | 1/0   |                                                                 |
| 30 | PIO7             | 1/0   | Programmable input/output                                       |
|    |                  |       | Alternative Function: I <sup>2</sup> C Serial Data input/output |
| 31 | NC               |       | NC (Do not connect to any pin)                                  |
| 32 | PIO9             | I/O   | LED indication, output                                          |
|    |                  |       | Alternative Function: Programmable input/output                 |
| 33 | PIO10            | I/O   | Connection state, output. H=Connect , L=No connection           |
|    |                  |       | Alternative Function: Programmable input/output                 |
| 34 | NC               |       | NC (Do not connect to any pin)                                  |
| 35 | GND              | Vss   | Power Ground                                                    |
| 36 | ANT              | 0     | RF output                                                       |



### 4. PHYSICAL INTERFACE

### 4.1 Power Management

The transient response of the regulator is important. If the power rails of the module are supplied from an external voltage source, the transient response of any regulator used should be 20µs or less. It is essential that the power rail recovers quickly.

### 4.2 Reset

An external active-low reset signal, RESET\_N, can be used to put the FSC-BT966 in the reset state. An external voltage detector reset IC with 50 ms delay is needed on the RESET\_N. The RESET\_N should be released only after the VDDO supply voltage level has been stabilized for 50 ms.

### 4.3 General Purpose Analog IO

FSC-BT966 has 2 general-purpose analogue interface pins, AIO1, AIO2.

### 4.4 General Purpose Digital IO

FSC-BT966 provides up to 6 lines of programmable bidirectional I/O.

### 4.5 RF Interface

For this module, the antenna must be connected to work properly.

The user can connect a 50ohm antenna directly to the RF port.

- 2402–2480 MHz Bluetooth 5.0 Dual Mode (BT and BLE); 1 Mbps to 3 Mbps over the air data rate.
- TX output power of: Class1: +12dBm(MAX)@GFSK Tx power

Class1: +9dBm(MAX)@EDR Tx power

Class 2: +2dBm(MAX)@GFSK Tx power

Receiver to achieve maximum sensitivity: -93.5dBm @ GFSK,0.1% BER, 1 Mbps.

-96.5dBm @ LE GFSK, 0.1% BER, 1 Mbps -95.5dBm @ π/4-DQPSK, 0.01% BER, 2 Mbps -89.5dBm @ 8-DPSK, 0.01% BER, 3 Mbps



### 4.6 Serial Interfaces

### 4.6.1 UART Interface

FSC-BT966 provides one full-duplex asynchronous communication channel of Universal Asynchronous Receiver/Transmitters (UART). The UART controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU. Each UART Controller channel supports ten types of interrupts.

This is a standard UART interface for communicating with other serial devices. The UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.

When the module is connected to another digital device, UART\_RX and UART\_TX transfer data between the two devices. The remaining two signals, UART\_CTS and UART\_RTS, can be used to implement RS232 hardware flow control where both are active low indicators.

This module output is at 3.3V CMOS logic levels (tracks VCC). Level conversion must be added to interface with an RS-232 level compliant interface.

Some serial implementations link CTS and RTS to remove the need for handshaking. We do not recommend linking CTS and RTS except for testing and prototyping. If these pins are linked and the host sends data when the FSC-BT966 deasserts its RTS signal, there is significant risk that internal receive buffers will overflow, which could lead to an internal processor crash. This drops the connection and may require a power cycle to reset the module. We recommend that you adhere to the correct CTS/RTS handshaking protocol for proper operation.

|                                 | う.       |                      |
|---------------------------------|----------|----------------------|
| Table 3: Possible UART Settings |          |                      |
| Parameter                       | °C2      | Possible Values      |
|                                 | Minimum  | 1200 baud (≤2%Error) |
| Baudrate                        | Standard | 115200bps(≤1%Error)  |
|                                 | Maximum  | 4Mbaud(≤1%Error)     |
| Flow control                    | J.       | RTS/CTS, or None     |
| Parity                          |          | None, Odd or Even    |
| Number of stop bits             |          | 1/2                  |
| Number of data bits             |          | 8                    |



#### Figure 4: UART Connection



#### I<sup>2</sup>C Interface 4.6.2

The FSC-BT966 provides a 2-pin master I2C interface, which can be used to retrieve configuration information from an external EEPROM or to communicate with peripherals such as trackball or touch-pad modules, and motion tracking ICs used in mouse devices. The BSC interface is compatible with I2C slave devices. I2C does not support multimaster capability or flexible wait-state insertion by either master or slave devices.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the following figure for more details about I<sup>2</sup>C Bus Timing.



The device on-chip I<sup>2</sup>C logic provides the serial interface that meets the I<sup>2</sup>C bus standard mode specification. The I<sup>2</sup>C port handles byte transfers autonomously. The J<sup>2</sup>C H/W interfaces to the J<sup>2</sup>C bus via two pins: SDA and SCL. Pull up resistor is needed for  $I^2C$  operation as these are open drain pins. When the I/O pins are used as  $I^2C$  port, user must set the pins' function to  $I^2C$  in advance. 5000

#### 4.6.3 **I2S interface**

FSC-BT966 supports I2S input and output via its two industry-standard I2S digital audio interfaces, left-justified or right-justified.

FSC-BT966 supports several alternative PCM data formats. For further details, contact Feasycom. When in PCM mode, the following pin name to function mappings apply.

| Table 4: Alternative functions of the digital audio bus interface on the PCM inter | face |
|------------------------------------------------------------------------------------|------|
|------------------------------------------------------------------------------------|------|

| PCM_OUT  |
|----------|
|          |
| PCM_IN   |
| PCM_SYNC |
| PCM_CLK  |
|          |



#### **ELECTRICAL CHARACTERISTICS** 5.

#### **Absolute Maximum Ratings** 5.1

Absolute maximum ratings for supply voltage and voltages on digital and analogue pins of the module are listed below. Exceeding these values causes permanent damage.

#### Table 5: Absolute Maximum Rating

| Parameter                        | Min  | Max | Unit |
|----------------------------------|------|-----|------|
| Ambient temperature of operation | -30  | 85  | °C   |
| Storage temperature              | -40  | 125 | °C   |
| VDD                              | -0.5 | 3.6 | V    |
|                                  |      |     |      |

#### **Recommended Operating Conditions** 5.2

| Table 6: Recommended Operating Conditions     |     |      |     |      |
|-----------------------------------------------|-----|------|-----|------|
| Parameter                                     | Min | Туре | Max | Unit |
| Input supply voltage, Vin                     | 3.0 | 3.3  | 3.6 | V    |
| Operating Temperature                         | -30 | 25   | +85 | °C   |
| Lout, Rout Stereo line output load resistance | 0.6 | 10   |     | kΩ   |

#### Input/output Terminal Characteristics 5.3

#### 5.3.1 Audio features

#### Table 7: DC Characteristics (V<sub>DD</sub> - V<sub>SS</sub> = 3 ~ 3.6 V, T<sub>A</sub> = 25°C)

| 5.3 Input/output Terminal Characteristics                              |                                                |     |      |     |                  |
|------------------------------------------------------------------------|------------------------------------------------|-----|------|-----|------------------|
| 5.3.1 Audio features                                                   | °C6                                            |     |      |     |                  |
| Table 7: DC Characteristics ( $V_{DD}$ - $V_{SS}$ = 3 ~ 3.6 V, $T_{A}$ | .= 25°C)                                       |     |      |     |                  |
| Parameter                                                              | TEST CONDITIONS                                | Min | Туре | Max | Unit             |
| AUDIO ADC - sine wave input                                            | SOL                                            |     |      |     |                  |
| Input signal level (0dB)                                               | Single-ended, CM = 0.9V                        | -   | 0.5  | -   | $V_{\text{RMS}}$ |
| Device Setup                                                           | 1kHz sine wave input                           |     |      |     |                  |
|                                                                        | Single-ended Configuration                     |     |      |     |                  |
|                                                                        | R <sub>in</sub> = 20K, f <sub>s</sub> = 48kHz, |     |      |     |                  |
|                                                                        | AOSR = 128, MCLK = 256*f <sub>s</sub> ,        |     |      |     |                  |
|                                                                        | PLL Disabled; AGC = OFF,                       |     |      |     |                  |
|                                                                        | Channel Gain = 0dB,                            |     |      |     |                  |
|                                                                        | Processing Block = PRB_R1,                     |     |      |     |                  |
|                                                                        | Power Tune = PTM_R4                            |     |      |     |                  |
| SNR Signal-to-noise ratio, A-weighted <sup>(1) (2)</sup>               | Inputs ac-shorted to ground                    | 80  | 91   |     | dB               |
| DR Dynamic range A-weighted <sup>(1) (2)</sup>                         | –60dB full-scale, 1-kHz input signal           |     | 90   |     | dB               |
| THD+N Total Harmonic Distortion plus Noise                             | –3 dB full-scale, 1-kHz input signal           |     | -80  | -70 | dB               |

| AUDIO ADC - Differential Input |                             |    |    |
|--------------------------------|-----------------------------|----|----|
| Input signal level (0dB)       | Differential Input, CM=0.9V | 10 | mV |
|                                |                             |    |    |



| Device Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1kHz sine wave input                                  |       |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Differential configuration                            |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INL routed to Right ADC                               |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INR routed to Left ADC                                |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R <sub>in</sub> =10K, f <sub>s</sub> =48kHz, AOSR=128 |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MCLK = $256^* f_s$ PLL Disabled                       |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC = OFF, Channel Gain=40dB                          |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Processing Block= PRB R1,                             |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Power Tune = PTM R4                                   |       |                   |
| ICN Idle-Channel Noise, A-weighted <sup>(1) (2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inputs ac-shorted to ground, input                    | 2     | uV <sub>RMS</sub> |
| , Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | referred noise                                        |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |       |                   |
| AUDIO ADC - Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |       |                   |
| Gain Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1kHz sine wave input                                  | -0.02 | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-ended configuration                            |       |                   |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R <sub>in</sub> = 20K fs = 48kHz, AOSR=128,           |       |                   |
| e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MCLK = $256^* f_s$ , PLL Disabled                     |       |                   |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGC = OFF, Channel Gain=0dB                           |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Processing Block = PRB_R1,                            |       |                   |
| · ^ ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power Tune = PTM_R4, CM=0.9V                          |       |                   |
| Input Channel Separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1kHz sine wave input at -3dBFS                        | 103   | dB                |
| and the second se | Single-ended configuration                            |       |                   |
| LC C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INL routed to Left ADC                                |       |                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INR routed to Right ADC, $R_{in} = 20K$               |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGC = OFF, AOSR = 128,                                |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Channel Gain=0dB, CM=0.9V                             |       |                   |
| Input Pin Crosstalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1kHz sine wave input at –3dBFS.                       | 112   | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INL routed to Left ADC                                |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INR routed to Right ADC                               |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ac-coupled to ground                                  |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-ended configuration $R_{in} = 20K$ ,           |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AOSR=128 Channel, Gain=0dB, CM=0.9V                   |       |                   |
| PSRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217Hz, 100mVpp signal on AVdd,                        | 54    | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-ended configuration, R <sub>in</sub> =20K,     |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Channel Gain=0dB; CM=0.9V                             |       |                   |
| ADC programmable gain amplifier gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single-Ended, R <sub>in</sub> = 10K, PGA gain set to  | 0     | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OdB                                                   |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-Ended, R <sub>in</sub> = 10K, PGA gain set to  | 47.1  | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47.5dB                                                |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-Ended, R <sub>in</sub> = 20K, PGA gain set to  | -5    | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OdB                                                   |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-Ended, R <sub>in</sub> = 20K, PGA gain set to  | 41.1  | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47.5dB                                                |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single-Ended, R <sub>in</sub> = 40K, PGA gain set to  | -10   | dB                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |       |                   |



|                                           | OdB                                                  |      |    |
|-------------------------------------------|------------------------------------------------------|------|----|
|                                           | Single-Ended, R <sub>in</sub> = 40K, PGA gain set to | 35.1 | dB |
|                                           | 47.5dB                                               |      |    |
| ADC programmable gain amplifier step size | 1-kHz tone                                           | 0.5  | dB |
|                                           |                                                      |      |    |

#### ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE **Device Setup** Load = $10K\Omega$ (single-ended), 56pF; Input and Output CM=0.9V; LINE Output on LDOIN Supply; INL routed to ADCPGA\_L and INR routed to ADCPGA\_R; $R_{in} = 20k$ ADCPGA\_L routed to LOL and ADCPGA\_R routed to LOR; Channel Gain = 0dB Gain Error dB 0.6 Noise, A-weighted<sup>(1)</sup> 7 Idle Channel, $\mathrm{uV}_{\mathrm{RMS}}$ shihen reas INL and INR ac-shorted to ground Channel Gain=40dB, 3.4 $uV_{RMS}$ Input Signal (0dB) = 5mV<sub>rms</sub> Inputs ac-shorted to ground, Input Referred **MICROPHONE BIAS** Bias voltage CM=0.9V, LDOin = 3.3V AVdd **Bias voltage** ٧ Micbias Mode 3, Connect to AVdd CM=0.75V, LDOin = 3.3V v AVdd Micbias Mode 3, Connect to AVdd CM=0.9V, Micbias Mode 2, A-weighted, **Output Noise** 10 $\mathbf{uV}_{\mathsf{RMS}}$ 20Hz to 20kHz bandwidth, Current load = 0mA. Micbias Mode 3, Connect to AVdd **Current Sourcing** 3 mΑ Micbias Mode 3, Connect to AVdd 140 **Inline Resistance** Ω

#### AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT 1

| Device SetupLoad = 10 kΩ (single-ended), 56pFLine Output on AVdd SupplyInput & Output CM=0.9VDOSR = 128, MCLK=256* fs,Channel Gain = 0dB, word length = 16bits,Processing Block = PRB_P1,Power Tune = PTM_P3Full scale output voltage (0dB)0.5  |              |                     |                                           |     |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-------------------------------------------|-----|------------------|
| Line Output on AVdd Supply<br>Input & Output CM=0.9V<br>DOSR = 128, MCLK=256* fs,<br>Channel Gain = 0dB, word length = 16<br>bits,<br>Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub> | Device Setu  | ıp                  | Load = 10 k $\Omega$ (single-ended), 56pF |     |                  |
| Input & Output CM=0.9V<br>DOSR = 128, MCLK=256* fs,<br>Channel Gain = 0dB, word length = 16<br>bits,<br>Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub>                               |              |                     | Line Output on AVdd Supply                |     |                  |
| DOSR = 128, MCLK=256* fs,<br>Channel Gain = 0dB, word length = 16<br>bits,<br>Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub>                                                         |              |                     | Input & Output CM=0.9V                    |     |                  |
| Channel Gain = 0dB, word length = 16<br>bits,<br>Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub>                                                                                      |              |                     | DOSR = 128, MCLK=256* fs,                 |     |                  |
| bits,<br>Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub>                                                                                                                              |              |                     | Channel Gain = 0dB, word length = 16      |     |                  |
| Processing Block = PRB_P1,<br>Power Tune = PTM_P3<br>Full scale output voltage (0dB) 0.5 V <sub>RMS</sub>                                                                                                                                       |              |                     | bits,                                     |     |                  |
| Power Tune = PTM_P3    Full scale output voltage (0dB)  0.5  V <sub>RMS</sub>                                                                                                                                                                   |              |                     | Processing Block = PRB_P1,                |     |                  |
| Full scale output voltage (0dB)0.5VRMS                                                                                                                                                                                                          |              |                     | Power Tune = PTM_P3                       |     |                  |
|                                                                                                                                                                                                                                                 | Full scale o | utput voltage (OdB) |                                           | 0.5 | V <sub>RMS</sub> |



| -    |                                                     |                                            |    |     |     |    |
|------|-----------------------------------------------------|--------------------------------------------|----|-----|-----|----|
| SNR  | Signal-to-noise ratio A-weighted <sup>(1) (2)</sup> | All zeros fed to DAC input                 | 87 | 98  |     | dB |
| DR   | Dynamic range, A-weighted <sup>(1)(2)</sup>         | –60dB 1kHz input full-scale signal, Word   |    | 100 |     | dB |
|      |                                                     | length=20bits                              |    |     |     |    |
| THD+ | -N Total Harmonic Distortion plus Noise             | –3dB full-scale, 1-kHz input signal        |    | -81 | -68 | dB |
|      | DAC Gain Error                                      | 0 dB, 1kHz input full scale signal         |    | 0.4 |     | dB |
|      | DAC Mute Attenuation                                | Mute                                       |    | 117 |     | dB |
|      | DAC channel separation                              | -1 dB, 1kHz signal, between left and right |    | 110 |     | dB |
|      |                                                     | HP out                                     |    |     |     |    |
|      | DAC PSRR                                            | 100mVpp, 1kHz signal applied to AVdd       |    | 72  |     | dB |
|      |                                                     | 100mVpp, 217Hz signal applied to AVdd      |    | 75  |     | dB |
|      |                                                     |                                            |    |     |     | dB |

| AUDIO DAC – STEREO SINGLE-ENDED LINE                    |                                           |       |     |                  |
|---------------------------------------------------------|-------------------------------------------|-------|-----|------------------|
| OUTPUT 2                                                |                                           |       |     |                  |
| Device Setup                                            | Load = 10 k $\Omega$ (single-ended), 56pF |       |     |                  |
|                                                         | Line Output on AVdd Supply                |       |     |                  |
| 33                                                      | Input & Output CM=0.75V; AVdd=1.5V        |       |     |                  |
| °s                                                      | DOSR = 128,                               |       |     |                  |
| 2                                                       | MCLK=256* fs,                             |       |     |                  |
| 0                                                       | Channel Gain = -2dB, word length =        |       |     |                  |
|                                                         | 20bits,                                   |       |     |                  |
| (C)                                                     | Processing Block = PRB_P1,                |       |     |                  |
| SI                                                      | Power Tune = PTM_P4                       |       |     |                  |
| Full scale output voltage (0dB)                         |                                           | 0.355 |     | V <sub>RMS</sub> |
| SNR Signal-to-noise ratio A-weighted <sup>(1) (2)</sup> | All zeros fed to DAC input                | 97    |     | dB               |
| DR Dynamic range, A-weighted <sup>(1) (2)</sup>         | –60dB-1kHz input full-scale signal,       | 96    |     | dB               |
| THD+N Total Harmonic Distortion plus Noise              | -1dB full-scale, 1-kHz input signal       | -82   |     | dB               |
| AUDIO DAC – STEREO SINGLE-ENDED                         | 201                                       |       |     |                  |
| HEADPHONE OUTPUT 1                                      |                                           |       |     |                  |
| Device Setup                                            | Load = $16\Omega$ (single-ended), 50pF    |       |     |                  |
|                                                         | Headphone Output on AVdd Supply,          |       |     |                  |
|                                                         | Input & Output CM=0.9V, DOSR = 128,       |       |     |                  |
|                                                         | MCLK=256* fs, Channel Gain=0dB            |       |     |                  |
|                                                         | word length = 16 bits;                    |       |     |                  |
|                                                         | Processing Block = PRB_P1                 |       |     |                  |
|                                                         | Power Tune = PTM_P3                       |       |     |                  |
| Full scale output voltage (0dB)                         |                                           | 0.5   |     | V <sub>RMS</sub> |
| SNR Signal-to-noise ratio A-weighted <sup>(1) (2)</sup> | All zeros fed to DAC input                | 85 98 |     | dB               |
| DR Dynamic range, A-weighted <sup>(1)(2)</sup>          | –60dB 1kHz input full-scale signal, Word  | 97    |     | dB               |
|                                                         | Length =20 bits, Power Tune = PTM_P4      |       |     |                  |
| THD+N Total Harmonic Distortion plus Noise              | –3dB full-scale, 1-kHz input signal       | -81   | -68 | dB               |
| DAC Gain Error                                          | 0dB, 1kHz input full scale signal         | -0.3  |     | dB               |
| DAC Mute Attenuation                                    | Mute                                      | 120   |     | dB               |
| DAC channel separation                                  | –1dB, 1kHz signal, between left and right | 108   |     | dB               |
|                                                         | HP out                                    |       |     |                  |

#### **FSC-BT966 Datasheet**



| DAC PSRR        | 100mVpp, 1kHz signal applied to AVdd             | 71 | dB |
|-----------------|--------------------------------------------------|----|----|
|                 | 100mVpp, 217Hz signal applied to AVdd            | 76 | dB |
| Power Delivered | $R_L$ =16 $\Omega$ , Output Stage on AVdd = 1.8V | 15 | mW |
|                 | THDN < 1%, Input CM=0.9V,                        |    |    |
|                 | Output CM=0.9V                                   |    |    |
|                 | $R_L$ =16 $\Omega$ Output Stage on LDOIN = 3.3V, | 64 | mW |
|                 | THDN < 1% Input CM=0.9V,                         |    |    |
|                 | Output CM=1.65V                                  |    |    |

#### AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT 1

|      | Device Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load = 16W (single-ended), 50pF,    |       |                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Headphone Output on AVdd Supply,    |       |                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Input & Output CM=0.75V;            |       |                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVdd=1.5V,DOSR = 128, MCLK=256* fs, |       |                  |
|      | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Channel Gain = -2dB, word           |       |                  |
|      | e s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | length=20-bits;                     |       |                  |
|      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Processing Block = PRB_P1,          |       |                  |
|      | e contraction de la contractio | Power Tune = PTM_P4                 |       |                  |
|      | Full scale output voltage (0dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 0.375 | V <sub>RMS</sub> |
| SNR  | Signal-to-noise ratio A-weighted <sup>(1)(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All zeros fed to DAC input          | 97    | dB               |
| DR   | Dynamic range, A-weighted <sup>(1) (2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | –60dB 1kHz input full-scale signal, | 96    | dB               |
| THD+ | N Total Harmonic Distortion plus Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | –1dB full-scale, 1-kHz input signal | -81   | dB               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |       |                  |

(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.

(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

### 5.3.2 Digital I/O Characteristics

**Table 8:** At 25° C, AVdd = 3.3V,fs (Audio) = 48kHz, Cref = 10 mF on REF PIN, PLL disabled unless otherwise noted.

| Parameter                                             | Min | Туре | Max | Unit |
|-------------------------------------------------------|-----|------|-----|------|
| Input Voltage                                         |     |      |     |      |
| V <sub>IL</sub> - Standard IO Low level input voltage | -   | -    | 0.8 | V    |
| V <sub>IH</sub> - Standard IO Low level input voltage | 2.0 | -    | -   | V    |
|                                                       |     |      |     |      |
| Output Voltage                                        |     |      |     |      |
| V <sub>OL</sub> - Low Level Output Voltage            | -   | -    | 0.4 | V    |
| V <sub>OH</sub> - High Level Output Voltage           |     | -    | -   | V    |
| Tr/Tf                                                 | -   | -    | 5   | nS   |

-< x -< x -< y



| Input Currents  |   |   |      |    |
|-----------------|---|---|------|----|
| Low             | - | - | -1.0 | uA |
| High            | - | - | -1.0 | uA |
|                 |   |   |      |    |
| Output Currents |   |   |      |    |
| Low             | - | - | -2.0 | mA |
| High            | - | - | -4.0 | mA |
|                 |   |   |      |    |

### 5.4 Current Consumptions

Table 9: Bluetooth, BLE, BR and EDR Current Consumption, Class 1

| Mode                  | Remarks                                                                        | Туре    | Unit |
|-----------------------|--------------------------------------------------------------------------------|---------|------|
| 3DH5/3DH5             |                                                                                | 37.10   | mA   |
| BLE                   |                                                                                |         |      |
| BLE                   | Connected 600 ms interval                                                      | 211     | uA   |
| BLE ADV               | 1.00 sec ADV interval                                                          | 176     | uA   |
| BLE Scan              | No devices present. A 1.28-sec interval with 11.25 ms scan window.             | 355     | uA   |
| DMx/DHx               |                                                                                |         |      |
| DM1/DH1               | - SI                                                                           | 32.15   | mA   |
| DM3/DH3               | -                                                                              | 38.14   | mA   |
| DM5/DH5               | - 7.                                                                           | 38.46   | mA   |
| HIDOFF                | Deep sleep                                                                     | 2.69    | uA   |
| Page scan             | Periodic scan rate is 1.28 sec                                                 | 0.486   | mA   |
| Receive               | 10                                                                             |         |      |
| 1Mbps                 | Peak current level during reception of a basic-rate packet.                    | 26.373  | mA   |
| EDR                   | Peak current level during the reception of a 2 or 3 Mbps rate packet.          | 26.373  | mA   |
| Sniff Slave           | C                                                                              |         |      |
| 11.25ms               |                                                                                | 4.95    | mA   |
| 22.5ms                | -                                                                              | 2.6     | mA   |
| 495.00ms              | Based on one attempt and no timeout.                                           | 254     | uA   |
| Transmit              |                                                                                |         |      |
| 1Mbps                 | Peak current level during the transmission of a basic-rate packet: GFSK output | 60 280  |      |
|                       | power = 10 dBm.                                                                | 00.269  | mA   |
| EDR                   | Peak current level during the transmission of a 2 or 3 Mbps rate packet. EDR   | 52 / 85 |      |
| output power = 8 dBm. |                                                                                |         | mA   |



### 6. MSL &ESD Protection

Table 10: MSL and ESD

| Parameter                                  | Class | Max Rating      |
|--------------------------------------------|-------|-----------------|
| MSL grade(with JEDEC J-STD-020)            |       | MSL 3           |
|                                            |       |                 |
| Human Body Model Contact Discharge per     | 2     | 2kV(all pins)   |
| ANSI/ESDA/JEDEC JS-001                     |       |                 |
| Charged Device Model Contact Discharge per | III   | 500V (all pins) |
| JEDEC/EIA JESD22-C101                      |       |                 |
|                                            |       |                 |

### 7. RECOMMENDED TEMPERATURE REFLOW PROFILE

Prior to any reflow, it is important to ensure the modules were packaged to prevent moisture absorption. New packages contain desiccate (to absorb moisture) and a humidity indicator card to display the level maintained during storage and shipment. If directed to bake units on the card, please check the below **Table 11** and follow instructions specified by IPC/JEDEC J-STD-033.

**Note:** The shipping tray cannot be heated above 65°C. If baking is required at the higher temperatures displayed in the below **Table 11**, the modules must be removed from the shipping tray.

Any modules not manufactured before exceeding their floor life should be re-packaged with fresh desiccate and a new humidity indicator card. Floor life for MSL (Moisture Sensitivity Level) 3 devices is 168 hours in ambient environment 30°C/60%RH.

Table 11: Recommended baking times and temperatures

| 125°C Baking Temp. |             | 90°C/≤ 5%RH Baking Temp. |             | 40°C/ ≤ 5%RH Baking Temp. |            |                  |
|--------------------|-------------|--------------------------|-------------|---------------------------|------------|------------------|
| MCI                | Saturated @ | Floor Life Limit         | Saturated @ | Floor Life Limit          | Saturated@ | Floor Life Limit |
| IVISL              | 30°C/85%    | + 72 hours @             | 30°C/85%    | + 72 hours @              | 30°C/85%   | + 72 hours @     |
|                    |             | 30°C/60%                 |             | 30°C/60%                  |            | 30°C/60%         |
| 3                  | 9 hours     | 7 hours                  | 33 hours    | 23 hours                  | 13 days    | 9 days           |
|                    |             |                          |             |                           |            |                  |

Feasycom surface mount modules are designed to be easily manufactured, including reflow soldering to a PCB. Ultimately it is the responsibility of the customer to choose the appropriate solder paste and to ensure oven temperatures during reflow meet the requirements of the solder paste. Feasycom surface mount modules conform to J-STD-020D1 standards for reflow temperatures.

The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder reflow.





**Pre-heat zone (A)** — This zone raises the temperature at a controlled rate, **typically 0.5 – 2 °C/s**. The purpose of this zone is to preheat the PCB board and components to  $120 \sim 150$  °C. This stage is required to distribute the heat uniformly to the PCB board and completely remove solvent to reduce the heat shock to components.

**Equilibrium Zone 1 (B)** — In this stage the flux becomes soft and uniformly encapsulates solder particles and spread over PCB board, preventing them from being re-oxidized. Also with elevation of temperature and liquefaction of flux, each activator and rosin get activated and start eliminating oxide film formed on the surface of each solder particle and PCB board. The temperature is recommended to be 150° to 210° for 60 to 120 second for this zone.

**Equilibrium Zone 2 (C) (optional)** — In order to resolve the upright component issue, it is recommended to keep the temperature in  $210 - 217^{\circ}$  for about 20 to 30 second.

**Reflow Zone (D)** — The profile in the figure is designed for Sn/Ag3.0/Cu0.5. It can be a reference for other lead-free solder. The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint. The recommended peak temperature (Tp) is 230 ~ 250 °C. The soldering time should be 30 to 90 second when the temperature is above 217 °C.

Cooling Zone (E) — The cooling ate should be fast, to keep the solder grains small which will give a longer-lasting joint. Typical cooling rate should be 4 °C.

### 8. MECHANICAL DETAILS

### 8.1 Mechanical Details

- Dimension: 13mm(W) x 26.9mm(L) x 2.0mm(H) Tolerance: ±0.1mm
- Module size: 13mm X 26.9mm Tolerance: ±0.2mm
- Pad size: 1mmX0.8mm Tolerance: ±0.2mm
- Pad pitch: 1.5mm Tolerance: ±0.1mm





### 9. HARDWARE INTEGRATION SUGGESTIONS

### 9.1 Soldering Recommendations

FSC-BT966 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.

Feasycom will give following recommendations for soldering the module to ensure reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Thus following recommendation should be taken as a starting point guide.

### 9.2 Layout Guidelines(Internal Antenna)

It is strongly recommended to use good layout practices to ensure proper operation of the module. Placing copper or any metal near antenna deteriorates its operation by having effect on the matching properties. Metal shield around the antenna will prevent the radiation and thus metal case should not be used with the module. Use grounding vias separated max 3 mm apart at the edge of grounding areas to prevent RF penetrating inside the PCB and causing an unintentional resonator. Use GND vias all around the PCB edges.

The mother board should have no bare conductors or vias in this restricted area, because it is not covered by stop mask print. Also no copper (planes, traces or vias) are allowed in this area, because of mismatching the on-board antenna.





Following recommendations helps to avoid EMC problems arising in the design. Note that each design is unique and the following list do not consider all basic design rules such as avoiding capacitive coupling between signal lines. Following list is aimed to avoid EMC problems caused by RF part of the module. Use good consideration to avoid problems arising from digital signals in the design.

Ensure that signal lines have return paths as short as possible. For example if a signal goes to an inner layer through a via, always use ground vias around it. Locate them tightly and symmetrically around the signal vias. Routing of any sensitive signals should be done in the inner layers of the PCB. Sensitive traces should have a ground area above and under the line. If this is not possible, make sure that the return path is short by other means (for example using a ground line next to the signal line).

### 9.3 Layout Guidelines(External Antenna)

Placement and PCB layout are critical to optimize the performances of a module without on-board antenna designs. The trace from the antenna port of the module to an external antenna should be  $50\Omega$  and must be as short as possible to avoid any interference into the transceiver of the module. The location of the external antenna and RF-IN port of the module should be kept away from any noise sources and digital traces. A matching network might be needed in between the external antenna and RF-IN port to better match the impedance to minimize the return loss.

As indicated in **Figure** below, RF critical circuits of the module should be clearly separated from any digital circuits on the system board. All RF circuits in the module are close to the antenna port. The module, then, should be placed in this way that module digital part towards your digital section of the system PCB.







### 9.3.1 Antenna Connection and Grounding Plane Design



General design recommendations are:

- The length of the trace or connection line should be kept as short as possible.
- Distance between connection and ground area on the top layer should at least be as large as the dielectric thickness.
- Routing the RF close to digital sections of the system board should be avoided.
- To reduce signal reflections, sharp angles in the routing of the micro strip line should be avoided. Chamfers or fillets are preferred for rectangular routing; 45-degree routing is preferred over Manhattan style 90-degree routing.





Figure 11: Recommended Trace Connects Antenna and the Module

- Routing of the RF-connection underneath the module should be avoided. The distance of the micro strip line to the ground plane on the bottom side of the receiver is very small and has huge tolerances. Therefore, the impedance of this part of the trace cannot be controlled.
- Use as many vias as possible to connect the ground planes.

### **10. PRODUCT PACKAGING INFORMATION**

### 10.1 DefaultPacking

- a, Tray vacuum
- b, Tray Dimension: 180mm \* 195mm









\* If require any other packing, must be confirmed with customer

\* Package: 2000PCS Per Carton (Min Carton Package)

Figure 13: Packing Box



### **11. APPLICATION SCHEMATIC**

