

FSC-BT1058

Bluetooth 5.3 Dual Mode And LE Audio Module Datasheet Version 1.0

Copyright © 2013-2024 Shenzhen Feasycom Co., Ltd. All Rights Reserved.

Shenzhen Feasycom Co., Ltd reserves the right to make corrections, modifications, and other changes to its products, documentation, and services at any time. Customers are advised to obtain the latest relevant information before placing orders. In order to minimize product risks, customers should implement sufficient design and operational safeguards. Reproduction, transfer, distribution, or storage of any part or all of the contents in this document, in any form, without written permission from Shenzhen Feasycom Co., Ltd, is strictly prohibited.

Revision History

Contact Us

Shenzhen Feasycom Co.,LTD

Email: sales@feasycom.com

Address: Rm 508, Building A, Fenghuang Zhigu, No.50, Tiezai Road, Xixiang, Baoan District, Shenzhen, 518100, China. Tel: 86-755-27924639

```
Shenzhen Feasycom Co.,Ltd
```


Contents

1.1 SELECTION OF VERSION 2. GENERAL SPECIFICATION 3. HARDWARE SPECIFICATION 3.1 BLOCK DIAGRAM AND PIN DIAGRAM 3.2 PIN DEFINITION DESCRIPTIONS	6 8
 3.1 BLOCK DIAGRAM AND PIN DIAGRAM 	8
 3.1 BLOCK DIAGRAM AND PIN DIAGRAM 	8
3.1 BLOCK DIAGRAM AND PIN DIAGRAM	
	8
3.2 PIN DEFINITION DESCRIPTIONS	
	_
4. PHYSICAL INTERFACE	
4.1 POWER MANAGEMENT	
4.1.1 Power Supply	
4.1.2 Battery Charger	
4.1.2.1 General charger operation	
4.1.2.2 Battery protection	
4.2 PIO	.15
4.3 PIO PAD ALLOCATION	.15
4.2 PIO 4.3 PIO PAD ALLOCATION. 4.4 STANDARD PIO 4.5 RESET	.15
4.5 RESET	.15
4.6 SYS_CTRL pin	.16
4.7 RF INTERFACE	.16
4.8 SERIAL INTERFACES	.16
4.8.1 UART Interface 4.8.2 I ² C Interface	.16
4.8.2 ¹² C Interface	.18
4.8.3 USB Interface	
4.9 LED DRIVERS	.19
	.20
4.10.1 Audio engine	
 4.10.3 Line/Headphone outputs 4.10.4 Standard I²S/PCM interface 	
4.10.4 Standard 1 SyPCivi Interface	
5. ELECTRICAL CHARACTERISTICS	28
5.1 Absolute Maximum Ratings	.28
5.2 RECOMMENDED OPERATING CONDITIONS	.29
5.3 INPUT/OUTPUT TERMINAL CHARACTERISTICS	.30
5.3.1 Digital	.30
5.3.2 Battery Charger	.30
5.3.3 USB	.31
5.3.4 LED Driver Pads	.31

32
32
32
33
33
34
34
36
37
37
39 40 41

1. INTRODUCTION

Overview

FSC-BT1058 is one of the Bluetooth dual-mode and LE Au dio modules from Feasycom. It provides support for both Bluetooth Low Energy and a compliant system for audio and data communication.

FSC-BT1058 integrates an ultra-low-power PMU and application processor with embedded flash memory, a high-performance stereo codec, Class-AB and Class-D headphone drivers, a power management subsystem, I²S, I²C, UART, PIO, LED drivers and ADC I/O in a SOC IC.

Both cores utilize external flash for code execution, enabling users to distinguish products with new features promptly without hindering development. The FSC-BT1058 module comes preloaded with the user-friendly and robust Feasycom firmware as the default setting. This encapsulated firmware simplifies Bluetooth functionality access through straightforward ASCII commands sent to the module via a serial interface, akin to using a Bluetooth modem. Consequently, the FSC-BT1058 offers an optimal solution for developers seeking to seamlessly integrate Bluetooth wireless technology into their designs.

Features

- Qualified to Bluetooth[®] v5.3 specification
- ➤ Dual 240 MHz Qualcomm[®] Kalimba[™] audio DSPs
- > 32/80 MHz Developer Processor for applications
- Firmware Processor for system
- High-performance 24-bit stereo audio interface
- Digital and analog microphone interfaces
- Flexible LED controller and LED pins with PWM support
- Serial interfaces: UART, Bit Serializer (I²C/SPI), USB

2.0

- Advanced audio algorithms
- Active Noise Cancellation: Hybrid, Feedforward, and Feedback modes, using Digital or Analog Mics, enabled using license keys available from Qualcomm[®]
- ➢ Qualcomm[®] LE Audio, aptX[™] and aptX HD Audio, LDAC
- aptX Adaptive, enabled using license key
- Qualcomm[®] cVc[™] Noise Cancellation Technology,
 enabled using license key
- Integrated PMU: Dual SMPS for system/digital circuits, Integrated Li-ion battery charger
 Bluetooth subsystem
- Qualified to Bluetooth v5.3 specification including 2
 Mbps Bluetooth Low Energy and Bluetooth Low
 Energy Isochronous Channels
- Qualcomm[®] Bluetooth High Speed Link
- Single ended antenna connection with on-chip balun and Tx/Rx switch
- Bluetooth, Bluetooth Low Energy, and mixed topologies supported
- Class 1 support

Application

- ➤ TrueWireless[™] stereo earbuds
- Wired/wireless stereo headsets/headphones
- Bluetooth Speaker

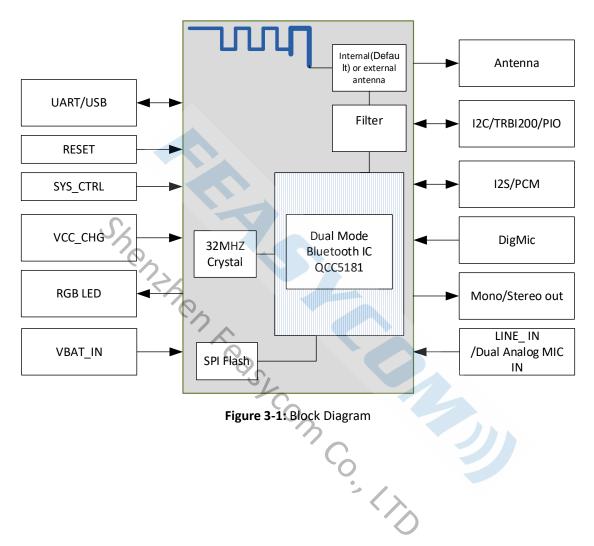
1.1 Selection of version

Order Number	Descriptions	Module picture as below showing
FSC-BT1058	Chip: QCC5181	g FEASYCOM Model:FSC-BT1058 www.feasycom.com

2. General Specifications

Table 2-1: General Sp	ecifications	
Categories	Features	Implementation
	Chip	QCC5181
	Bluetooth Version	V5.3
	Frequency	2.402 - 2.480 GHz
Wireless	Transmit Power	+15 dBm (Typ VBAT=3.7V)
Specification	Receive Sensitivity	-96.5 dBm (typ.) $\pi/4$ DQPSK receiver sensitivity
Specification	~~~	-90.0 dBm (typ.) 8DPSK receiver sensitivity
	0	-100.5 dBm (typ.) BLE 1 Ms/s receiver sensitivity
		Real-time digitised RSSI available to application
	Raw Data Rates (Air)	3 Mbps (Classic BT - BR/EDR)
		TX, RX, CTS, RTS
	UART Interface	General Purpose I/O
	UART Interface	Default 115200,N,8,1
		Baudrate support from 2400 to 4000000
		20 (maximum – configurable) lines
	GPIO	O/P drive strength (2, 4, 8, or 12 mA)
		Pull-up resistor (70 KΩ) control
	I ² C Interface	I ² C Master interface with speed up to 400 kbps
Host Interface and	SPI Interface	SPI debug and programming interface with read access disable locking
Peripherals		Analog input voltage range: 0~ 1.854V
	ADC Interface	10-bit ADC
		4 channels (configured from AIO total)
	USB Interface	1 USB2.0 Full Speed (12 Mb/s)
		LE Audio, aptX, aptX HD, aptX Adaptive(enabled using license key) ,SBC
		and AAC audio codecs
	Audio CODEC	Configurable Signal Detection to trigger events
		Compander to compress or expand the dynamic range of the audio
		Post Mastering to improve DAC fidelity
		24-bit I^2S interface with 1 input and 3 output channels , Supports

		8-slot TDM, Supports 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz, 192 kHz, 384 kHz sample rates
		SPDIF interfaces : Two instances configurable as input or output, Supports 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz, 192 kHz sample rates
		2 coder decoder (codec) output channels, supporting 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz, 192 kHz sample rates,16 codec input channels supporting 8 kHz, 16 kHz, 32 kHz, 44.1 kHz, 48 kHz, 96 kHz sample rates
		Digital mic: Five interfaces supporting up to ten microphones, Supports 500 kHz, 571 kHz, 666 kHz, 800 kHz, 1 MHz, 1.33 MHz, 2
		MHz, and 4 MHz clock frequencies
		Stereo audio ADC with line input, stereo audio DAC
		Supported sample rates of 8, 16, 32, 44.1, 48,96, 192 and 384KHz(Input)
		MIC/Line_IN SNR: 99 dB
	Shenzh	MIC/Line IN THD+N: -94.9dB
	5	Audio Output SNR: 103.8 dBA typ
	6	Audio Output THD+N: -92.5dB typ
	24	Audio Output Power: 1000mV (typ)(0dBFS 10K load)
		SPP (Serial Port Profile) - Up to 600 Kbps
	BR/EDR	A2DP/AVRCP/HFP/HSP/HOGP/PBAP/SPP Profiles support
Profiles		GATT Client & Peripheral
	Bluetooth Low Energy	Simultaneous BR/EDR and BLE support
Maximum	BR/EDR	up to 7 active slaves
Connections	Bluetooth Low Energy	1 connection as peripheral, up to 5 connections as central
		Via UART(TBD)
-		USB(TBD)
FW upgrade		OTA
		SPI
Supply Voltage	Supply	VDD_IO: 1.7 ~ 3.3V; VBAT_IN: 2.8V~ 4.30V
		Play: <5mA (0dB 1KHz sine wave signal)*Average
Power Consumption		Pairing: <5mA*Average
$(\texttt{Load=10K}\Omega, \texttt{VBAT_IN=3.3V})$		OFF: <100uA*Average
Physical	Dimensions	13mm(W) X 26.9mm(L) X 2.2mm(H); Pad Pitch 1mm
	Operating	-40°C to +85°C
Environmental	Storage	-40°C to +85°C
Missollereeve	Lead Free	Lead-free and RoHS compliant
Miscellaneous	Warranty	One Year
Humidity		10% ~ 90% non-condensing
MSL grade:		MSL 3
		Human Body Model: Class 2 2kV (all pins)
ESD grade:		Charged Device Model: Class III 500 V (all pins)
Chanzhan Faagyaam (Co. Itd	


Shenzhen Feasycom Co.,Ltd

-7- www.feasycom.com

3. HARDWARE SPECIFICATION

3.1 Block Diagram and PIN Diagram

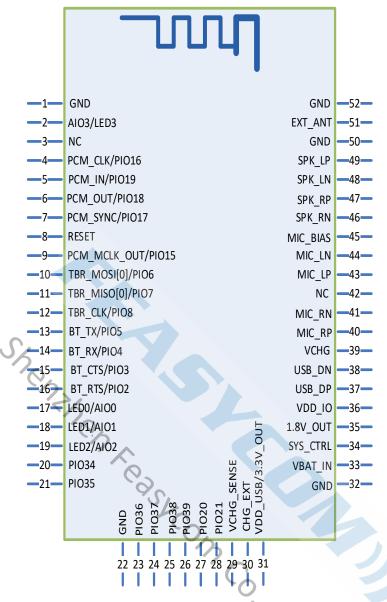


Figure 3-2: FSC-BT1058 PIN Diagram (Top View)

3.2 PIN Definition Descriptions

Table 3-1: Pin definition

Pin	Pin Name	Туре	Pin Descriptions	Notes
1	GND	Vss	Power Ground	
2	AIO3/LED3	A,I/O	General-purpose analog/digital input or open drain	
			LED output.	
3	NC	NC	NC-Do Not GND	
4	PCM_CLK/PIO16	I/O	Programmable I/O line 16.	Note 6
			Alternative function: PCM_CLK	
5	PCM_IN/PIO19	I/O	Programmable I/O line 19.	Note 6
			Alternative function: PCM_DIN[0]	
6	PCM_OUT/PIO18	I/O	Programmable I/O line 18.	Note 6

Shenzhen Feasycom Co.,Ltd

-9- www.feasycom.com

FSC-BT1058 Datasheet

			Alternative function: PCM_DOUT[0]	
7	PCM_SYNC/PIO17	I/O	Programmable I/O line 17.	Note 6
	_ ,		Alternative function: PCM_SYNC	
8	RESET	I/O	Automatically defaults to RESET# mode when the device is	
			unpowered, or in off modes.	
			Reconfigurable as a PIO after boot.	
9	PCM_MCLK_OUT/PIO15	I/O	Programmable I/O line 15.	
			Alternative function: MCLK_OUT	
10	PIO6	I/O	Programmable I/O line 6.	
			Alternative function: TBR_MOSI[0]	
11	PIO7	I/O	Programmable I/O line 7.	
			Alternative function: TBR_MISO[0]	
12	PIO8	1/0	Programmable I/O line 8.	
			Alternative function: TBR_CLK	
13	BT_TX/PIO5	I/O	BT_TX /Programmable I/O line 5.	Note 6
			Alternative function: TBR_MISO[1]	
14	BT_RX/PIO4	I/O	BT_RX/Programmable I/O line 4.	Note 6
	$\sim \gamma_{\rm c}$		Alternative function: TBR_MOSI[1]	
15	BT_CTS/PIO3	1/0	BT_CTS/Programmable I/O line 3	Note 6
16	BT_RTS/PIO2	1/0	BT_RTS/Programmable I/O line 2	Note 6
17	AIO0/LED0	A,1/O	General-purpose analog/digital input or open drain	Note
			LED output.	6,8
18	AIO1/LED1	A,I/O	General-purpose analog/digital input or open drain	Note
			LED output.	6,8
19	AIO2/LED2	A,I/O	General-purpose analog/digital input or open drain	Note
			LED output	6,8
20	PIO34	I/O	Programmable 1/O line 34	
21	PIO35	I/O	Programmable I/O line 35	
22	GND	Vss	Power Ground	
23	PIO36	I/O	Programmable I/O line 36	
24	PIO37	I/O	Programmable I/O line 37	
25	PIO38	I/O	Programmable I/O line 38	
26	PIO39	I/O	Programmable I/O line 39	
27	PIO20	I/O	Programmable I/O line 20.	Note 5
			Alternative function: PCM_DOUT[1]	
28	PIO21	I/O	Programmable I/O line 21.	Note 5
			Alternative function: PCM_DOUT[2]	
29	VCHG_SENSE		Charger input sense pin after external mode sense-resistor.	
			High impedance.	
			NOTE: If using internal charger or no charger, connect	
			VCHG_SENSE direct to VCHG.	
30	CHG_EXT		External charger transistor current control. Connect	
			to base of external charger transistor as per application	

			schematic.	
31	VDD_USB/3.3V_OUT		3.3V voltage output (MAX. 50mA OUT)	Note 7
32	GND	Vss	Power Ground	
33	VBAT_IN	Vdd	Battery voltage input.	
34	SYS_CTRL	I	Typically connected to an ON/OFF push button.	Note 3
			Boots device in response to a button press when power is still	
			present from battery and/or charger but software has placed	
			the device in the OFF or DORMANT state. Additionally useable	
			as a digital input in normal operation. No pull.	
35	1.8V_OUT	Vdd	1.8V voltage output	Note 1
36	VDD_IO	I.	PIO supply(1.8 V~3.3V)	Note 2
37	USB_DP		USB Full Speed device D+ I/O. IEC-61000-4-2	Note 4
			(device level) ESD Protection	
38	USB_DN		USB Full Speed device D- I/O. IEC-61000-4-2	Note 4
			(device level) ESD Protection	
39	VCHG	Vdd	Charger input to Bypass regulator.	Note 4
40	MIC_RP	А	Microphone differential 2 input, positive.	
	5		Alternative function:	
		5.	Differential audio line input right, positive	
41	MIC_RN	A	Microphone differential 2 input, negative.	
		0	Alternative function:	
			Differential audio line input right, negative	
42	NC		0	
43	MIC_LP	А	Microphone differential 1 input, positive.	
			Alternative function:	
			Differential audio line input left, positive	
44	MIC_LN	А	Microphone differential 1 input, negative.	
			Alternative function:	
			Differential audio line input left, negative	
45	MIC_BIAS	Vdd	Mic bias output.	
46	SPK_RN	А	speaker differential output, negative.	
			Alternative function: Differential line output, negative	
47	SPK_RP	А	speaker differential output, positive.	
			Alternative function: Differential line output, positive	
48	SPK_LN	А	speaker differential output, negative.	
			Alternative function: Differential line output, negative	
49	SPK_LP	А	speaker differential output, positive.	
			Alternative function: Differential line output, positive	
50	GND	Vss	Power Ground	
	RF_OUT	RF	Bluetooth transmit/receive.	Note 9
51			Dewer Cround	
51 52	GND	Vss	Power Ground	

Note 2	Provid voltage reference to I/O, such as: PIO, UART, SPI, I ² S, PCM, etc
Note 3	Regulator enable input. Can also be sensed as an input. Regulator enable and multifunction button. A high input (tolerant to VBAT) enables the on-chip regulators, which can then be latched on internally and the button used as a multifunction input. * Reset this pin for at least 100ms after VBAT IN and VDD IO is up, then set this pin for more than 100
	ms (can use MCU/button/delayed circuit to achieve this) to start the system.
Note 4	Using USB function and Lithium battery charging function, the pin should connect 5V voltage
Note 5	1, Alternate I ² C function 2, I ² C Serial Clock and Data.
	It is essential to remember that pull-up resistors on both SCL and SDA lines are not provided in the
	module and MUST be provided external to the module.
Note 6	For customized module, this pin can be work as I/O Interface.
Note 7	1, When the Pin33(BAT_IN) with a 3V3~4V2
	this pin outputs 2V8 ~ 3V0 (maximum current: 50mA) 2, when the No. 39 PIN (VCHG) with a 5V input pin,
	this pin outputs 3.2V ~ 3.4V (maximum current: 50mA)
Note 8	Analog input voltage range: 0~ 1.8V
Note 9	By default, this PIN is an empty feet. This PIN can connect to an external antenna to improve the
	Bluetooth signal coverage.
	To use an external antenna, the position of an 0Ω resistor needs to be changed to disconnect the
	To use an external antenna, the position of an 0Ω resistor needs to be changed to disconnect the on-board antenna and connect to the external antenna; Or contact Feasycom for modification.
	To use an external antenna, the position of an 0Ω resistor needs to be changed to disconnect the on-board antenna and connect to the external antenna; Or contact Feasycom for modification.
	To use an external antenna, the position of an 0Ω resistor needs to be changed to disconnect the

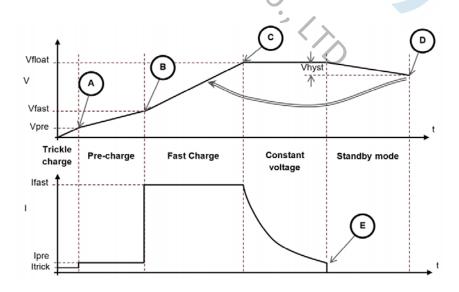
4. PHYSICAL INTERFACE

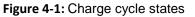
4.1 Power Management

4.1.1 Power Supply

The transient response of the regulator is important. If the power rails of the module are supplied from an external voltage source, the transient response of any regulator used should be 20µs or less. It is essential that the power rail recovers quickly.

4.1.2 Battery Charger


- > The default mode for the FSC-BT1058 battery charger is OFF.
- > The internal charger circuit can provide up to 200mA of charge current.


ente

The battery charger operating mode is determined by the battery voltage and current, see the table below and the picture below.

4.1.2.1 General charger operation

The charger system has five main operating states. The current charger status can be read by application software. Figure 4-1 shows the five states in the charge cycle.

Trickle Charge

This mode is activated when VBAT falls within the 0 to Vpre range, typically occurring with a deeply discharged battery (below the Vpre threshold at point (A)) or when the battery protection circuit disconnects the cell temporarily. It is designed to deliver a minor charging current for safe cell recharging and trigger a reset in the cell's battery protection circuit. The hysteresis on Trickle charge into Pre-Charge is typically 100 mV.

Pre Charge

This mode is activated when VBAT falls within the Vpre to Vfast range. Charging the cell at the maximum rate is not advised in this range, but a faster charge rate than Trickle charge is permissible, usually around 10% to 20% of the Fast charge rate. The Vfast threshold at point (B) can be customized.

The hysteresis for transitioning from Pre-Charge to Fast charge at Vfast is typically 200 mV.

Fast Charge Mode

Fast charge has two parts:

- **Constant current**: Entered when VBAT is sensed in the range Vfast to Vfloat point (C). This is the maximum charge rate, and should be set according to the battery manufacturers Data Sheet.
- Constant voltage: When Vfloat is reached the cell voltage is maintained at Vfloat, and the current slowly reduces until the termination point (E) is reached where charging ceases, and the charger transitions to Standby mode.

Vfloat can be adjusted from 3.65 V to 4.40 V in 50 mV increments. This flexibility enables the use of cells with varying Vfloat values or extends cell life by lowering Vfloat. Additionally, Vfloat can be modified based on temperature fluctuations to safeguard cell longevity.

Dynamic shifts in VBAT load current can have a significant impact on the current termination point (E), while changes in VCHG voltage may also play a minor role.

Standby Mode

After the charge current decreases and charging ceases, the system transitions into Standby mode. During Standby mode, the charger remains inactive in terms of charging but continuously monitors the battery voltage. If the voltage drops below Vfloat by a configurable threshold Vhyst (point D), the charger reverts back to Fast charge mode. Vhyst is specified as a percentage of Vfloat.

4.1.2.2 Battery protection

Deep discharge of a Li-ion battery over an extended period can result in irreversible damage, leading to excessive heating during subsequent charging cycles. To prevent this, customer application software should power off the device around 3.0 V, as typically only about 5% of usable capacity remains at this stage. QTIL strongly advises integrating a battery protection IC into all applications, usually within the battery pack for added protection. This IC is designed to disconnect the battery cell in case of voltage fluctuations and overcurrent issues in the

connections between FSC-BT1058 and the cell.

4.2 PIO

FSC-BT1058 has the following digital I/O pads:

- 17 PIO pads
- 4 x pads intended for LED operation: LED[3:0]
- > 1 x Power-on signaling: SYS_CTRL, usable as an input after boot.

4.3 PIO pad allocation

The following FSC-BT1058 functions have specific pad allocations:

- LED pads
- Transaction bridge
- Audio I²S/PCM

NOTE

Digital microphones, UART, Bit Serializer (I²C/SPI), SPDIF and LED PWM controllers can use any PIO.

4.4 Standard PIO

The standard digital I/O pins (PIO) on FSC-BT1058 are divided into separate pad domains, each with its own VDD_IO power range from 1.7 V to 3.6 V. When using PIOs in a supply domain for high-speed interfaces, it can be advantageous to decouple the respective VDD_IO pin with a 100 nF decoupling capacitor. It is important to power the VDD_IO of a specific pin before applying voltages to any PIO powered by that domain to prevent back powering through the electrostatic discharge (ESD) protection in the pad.

PIOs can be configured with pull-up or pull-down options with two strengths (weak and strong). Additionally, a sticky function can be programmed to strongly pull PIOs to their current input state. After a reset, PIOs return to a default pull state, which can then be reconfigured by software.

Moreover, PIOs offer programmable drive strengths of 2, 4, 8, or 12 mA.

While all PIOs are readable by all subsystems, software assigns write access to specific subsystem controls. PIO inputs are processed via Schmitt triggers.

4.5 Reset

The digital reset pin (RESET#) of FSC-BT1058 is a low-level effective reset signal. Spike filtering inside the chip helps avoid accidental resets by filtering out stray noise. The RESET# pin has a fixed strong pull-up to VDD_IO to maintain an unconnected state. The input is asynchronous and in FSC-BT1058 to ensure a complete reset.

The device also incorporates an internal Reset Protection function, which can maintain power rails activated and restart the system following unexpected resets, such as severe ESD events. If VCHG is absent and SYS_CTRL is low, activating the Reset# post the Reset Protection timeout (typically over 1.8 seconds) will result in device shutdown. To restart, a SYS_CTRL assertion or connection of VCHG is required.

NOTE

- FSC-BT1058 is always powered if VCHG is present. It does not power down if RESET# is asserted while VCHG remains present.
- QTIL recommends that FSC-BT1058 is powered down via software-controlled methods rather than external assertion of RESET#.
- Holding RESET# low continuously is not the lowest FSC-BT1058 power state, because pull downs are enabled on VCHG and VDD_USB in this state.
- **CALC** RESET# is guaranteed to work if held low for 120 μs

4.6 SYS_CTRL pin

- > SYS_CTRL is an input pin that acts as a power on signal for the internal regulators.
- From the OFF state, SYS_CTRL must be asserted for >20 ms to start power up.
- SYS_CTRL is VBAT tolerant (4.8 V max), and typically connected via a button to VBAT. SYS_CTRL has no internal pull resistor, and requires an external pull-down if left undriven.
- Use software to logically disconnect SYS_CTRL from the power on signal for internal regulators. For example, when booted, software takes control of the internal regulators and the state of SYS_CTRL is ignored by the regulators.

4.7 **RF Interface**

For this module, the antenna must be connected to work properly.

The user can connect a 50ohm antenna directly to the RF port.

- > 2402–2480 MHz Bluetooth 5.3 Dual Mode (BT and BLE); 1 Mbps to 3 Mbps over the air data rate.
- TX output power of +15dBm (MAX).
- Receiver to achieve best sensitivity -100.5dBm for BLE and -97dBm for Classic Bluetooth.

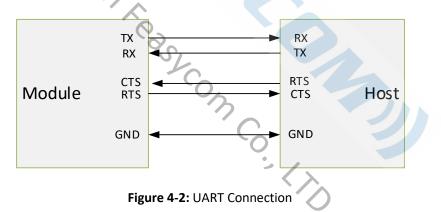
4.8 Serial Interfaces

4.8.1 UART Interface

FSC-BT1058 offers a single channel of Universal Asynchronous Receiver/Transmitters (UART) for full-duplex asynchronous communications. The UART Controller within the device handles serial-to-parallel conversion for incoming peripheral data and parallel-to-serial conversion for data sent from the CPU. Each UART Controller channel supports 10 different types of interrupts, making it versatile for various applications.

-0-- <>

This UART interface serves as a standard method for communication with other serial devices, facilitating interactions using the RS232 protocol. When connected to another digital device, UART_RX and UART_TX facilitate data transfer between the devices, while UART_CTS and UART_RTS signals enable RS232 hardware flow control, both operating as active low indicators.


The module operates at 3.3V CMOS logic levels tied to VCC. To connect with an RS-232 level compliant interface, a level conversion unit is necessary.

In some serial setups, CTS and RTS connections are directly linked to eliminate the need for handshaking. However, we advise against linking CTS and RTS except for testing and prototyping purposes. When these pins are connected and the host transmits data while the FSC-BT1058 deactivates its RTS signal, there is a notable risk of overflowing internal receive buffers, potentially causing a processor crash. This situation can result in a dropped connection, requiring a power cycle to reset the module. To ensure proper functionality, it is crucial to follow the correct CTS/RTS handshaking protocol.

Table 4-1: Possible UART Settings

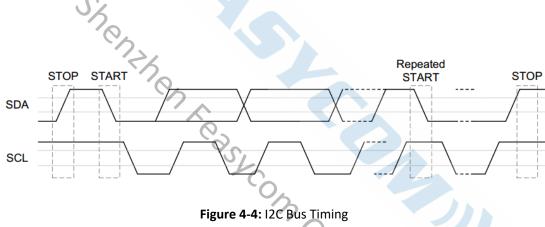
Parameter	Possible Values		
	Minimum	2400 baud (≤2%Error)	
Baudrate	Standard	19200bps(≤1%Error)	
	Maximum	4Mbaud(≤1%Error)	
Flow control		RTS/CTS, or None	
Parity		None, Odd or Even	
Number of stop bits		1 /2	
Bits per channel		8	

When connecting the module to a host, please make sure to follow .

The FSC-BT1058 undergoes a reset via the UART interface upon detecting a break signal, identified by a continuous logic low (0V) on the UART_RX pin, as depicted in the accompanying image. If the duration of tBRK surpasses the predefined value in PSKEY_HOSTIO_UART_RESET_TIMEOUT, a reset operation will be initiated. This feature enables the host to initialize the system to a predetermined state. Furthermore, the FSC-BT1058 can send a break character to rouse the host from sleep mode.

Figure 4-3: Break Signal

During the reset state of the FSC-BT1058, the UART interface operates in a tristate mode, allowing users to attach additional devices to the physical UART bus. However, a limitation of this approach is that all devices connected to


this bus must also tristate when the FSC-BT1058 reset is deactivated and the firmware starts running.

4.8.2 I²C Interface

The FSC-BT1058 features a customizable I²C interface.

I²C is a two-wire, bidirectional serial bus that offers a straightforward and effective means of data interchange between devices. This standard supports multiple masters, incorporating collision detection and arbitration to prevent data corruption in scenarios where two or more masters seek to control the bus simultaneously.

Data is synchronously transferred between a Master and a Slave, with communication occurring on the SDA line in accordance with SCL, on a byte-by-byte basis. Each data byte consists of 8 bits, with each bit transmitted starting from the Most Significant Bit (MSB). Following the transmission of each byte, an acknowledge bit is sent. During the high period of SCL, each bit is sampled, requiring the SDA line to remain stable during this interval and allowing changes only during the low period of SCL. Any alterations on the SDA line while SCL is high are interpreted as commands (START or STOP). For a more detailed overview of the I2C Bus Timing, please consult the accompanying figure.

The on-chip I^2C logic of the device offers a serial interface that complies with the I^2C bus standard mode specifications. The I^2C port independently manages byte transfers. Connection to the I^2C bus is facilitated through two pins: SDA and SCL. Since these are open drain pins, pull-up resistors are necessary for proper I^2C operation. When utilizing the I/O pins as an I^2C port, users must preconfigure the pin functions to I^2C mode.

4.8.3 USB Interface

- FSC-BT1058 has a USB device interface: An upstream port, for connection to a host Phone/PC or battery charging adaptor. For details software support for USB features, refer to ADK documentation.
- The device port is a USB2.0 Full Speed (12 Mb/s) port. Typically FSC-BT1058 enumerates as a compound device with a hub with the enabled audio source / sink / HID / mass storage device appearing behind this hub.
- > The DP 1.5 k pull-up is integrated in FSC-BT1058. No series resistors are required on the USB data lines.
- FSC-BT1058 contains integrated ESD protection on the data lines to IEC 61000-4-2 (device level). In normal applications, no external ESD protection is required.
- Extra ESD protection is not required on VCHG (VBUS) because FSC-BT1058 meets the USB certification requirements of a minimum of 1uF, and a maximum of 10 μF being present on VCHG (VBUS).
- > The VCHG input of FSC-BT1058 is tolerant of a constant 6.5 V and transients up to 7.0 V. If extra overvoltage

protection is required, external clamping protection devices can be used.

FSC-BT1058 supports charger detection to the USB BC 1.2 specification. \triangleright

4.8.4 **SPI master**

Bitserial operating as a SPI master.

Figure 4-5 and Figure 4-6 show bitserial interface timings with different clock phase (CPHA).

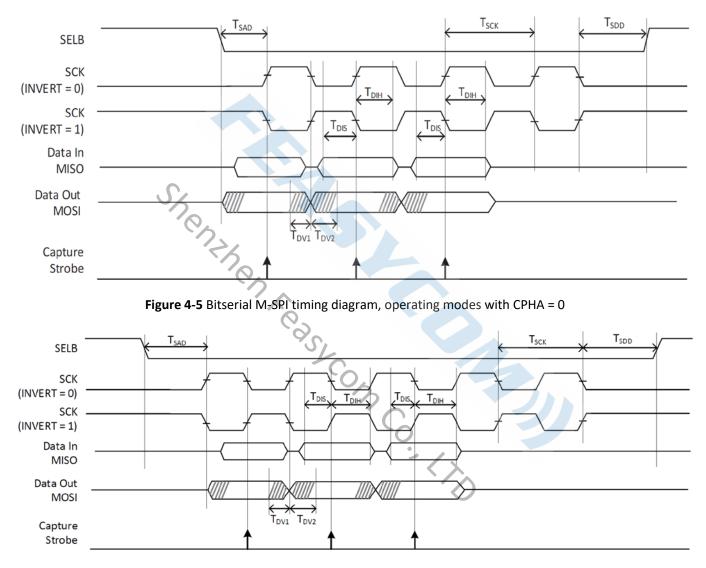


Figure 4-6 Bitserial M-SPI timing diagram, operating modes with CPHA = 1

Table 4-2	lists bitserial	interface	timing	parameters.
-----------	-----------------	-----------	--------	-------------

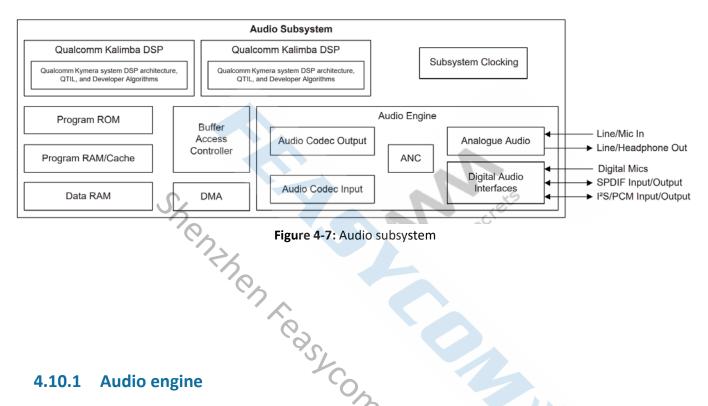
Table 4-2 Bitseria	al M-SPI timin	g parameters			
Parameter	Symbol	Min	Max	Unit	Notes
Clock period	TSCK	125	2000	ns	-
Sel Assert to	TSAD	17.0	-	ns	-
SCK rise delay					
SCK fall to SEL	TSDD	52.5	-	ns	-

de-assert delay					
MISO data	TDIS	39.0	-	ns	-
setup					
MISO data hold	TDIH	0.0	-	ns	-
MOSI data	TDV1	-13.0	-	ns	Total data invalid window of 28.1 ns
invalid					
minimum					
MOSI data	TDV2	-	15.1	ns	Total data invalid window of 28.1 ns
invalid					
maximum					

When functioning as an SPI master, the Bitserial operates at half the crystal frequency. SCK frequencies are integer divisions of the Bitserial clock frequency, with the lowest supported division being 2. For instance, with a 32 MHz crystal, achievable SCK frequencies include 8 MHz, 5.33 MHz, 4 MHz, and so forth.

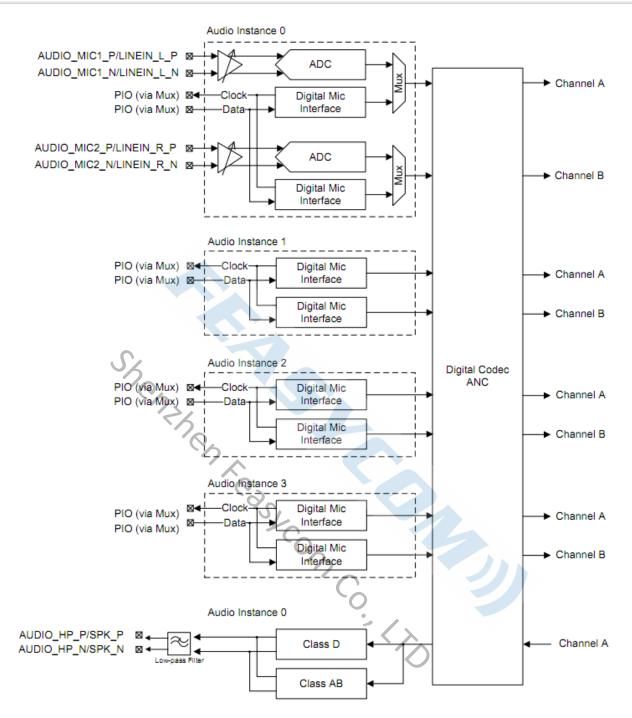
4.9 LED Drivers

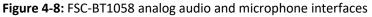
- LED Driver: This mode is designed for driving LEDs. The pad operates as an open-drain pad, tolerable of voltages up to 6.5 V. Therefore the cathode of the LED should be connected to the FSC-BT1058 LED pad. Each pad is rated to sink up to 50 mA of current.
- FSC-BT1058 has six PWM-based LED controllers controlled by the Applications subsystem. Use them for driving either the LED pads (through virtual PIOs) or other available PIOs.
- > An application may configure the LED flash rate and ramp time using a dedicated API.
- Once configured, the LED flash and ramp rate are fully hardware controlled within the LED/PWM module. It is possible to synchronize any number of the LED drivers together. Use the flash/ramp rate configuration to generate color change sequences on RGB LEDs.


4.10 Audio subsystem

Audio subsystem features include:

- Analog DAC: Mono analog output configurable as differential Class-AB audio output or differential high efficiency Class-D
- Analog ADC: Stereo analog inputs configurable as single ended line inputs, or unbalanced, or balanced analog microphone inputs
- I²S/PCM interface
 - $\hfill\square$ 24-bit I²S interface with 1 input and 3 output channels
 - □ Supports 8-slot TDM
 - $\hfill\square$ it I²S interface DM with 1 input and 3 0,384 kHz sample rates
- SPDIF interfaces
 - $\hfill\square$ Two instances configurable as input or output
 - □ Supports 8, 16, 32, 44.1, 48, 96, 192 kHz sample rates
- Audio MCLK: Programmable, available on PIO[15]
- Audio engine
 - 🗌 u2 Codec output channels, supporting 8, 16, 32, 44.1, 48, 96, 192 kHz sample rates
 - \Box o16 Codec input channels supporting 8, 16, 32, 44.1, 48, 96 kHz sample rates
- Digital mics


- $\hfill\square$ Five interfaces supporting up to ten microphones
- 🗌 Supports 500 kHz, 571 kHz, 666 kHz, 800 kHz, 1 MHz, 1.33 MHz, 2 MHz, and 4 MHz clock frequencies
- 1 or 2-mic cVc headset noise reduction and echo cancellation technology
- SBC and AAC audio codecs support
- aptX, aptX HD, aptX Adaptive, enabled using license key
- > ANC: Hybrid, Feedforward, and Feedback modes



The Audio subsystem incorporates 16 input and 2 output codec channels for both digital and analog audio interfaces. Additionally, the subsystem features Active Noise Cancellation hardware.

Audio Codec Block Diagram

NOTE: FSC-BT1058 does not support 16/32 ohm headphones

4.10.2 Line/Mic inputs

The FSC-BT1058 is equipped with two high-quality audio input ADCs (HQADC) designed for line input purposes, but adaptable to various applications supporting mixed differential and single-ended use cases. Operating at 24-bit resolution, the ADC supports sample rates ranging from 8 kHz to 96 kHz. The HQADC offers configurability through an internal switch arrangement, as illustrated in **Figure 4-9**, with VAG serving as a virtual ground reference. The software API permits direct manipulation of the nine switches or facilitates simpler control, accommodating three standard modes:

- Stereo differential input
- Stereo single ended input, using the P inputs
- Stereo single ended input, using the N inputs

Inputs should be AC coupled, typically with a 2u2 capacitor. This capacitor value can be reduced at the expense of low frequency response attenuation.

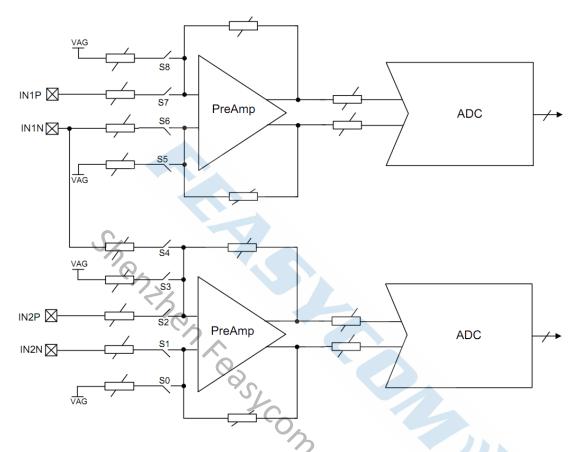


Figure 4-9: FSC-BT1058 high-quality ADC input switch configuration

4.10.3 Line/Headphone outputs

A high-quality audio output DACs (HQDAC) drive mono low impedance differential loads (BTL headphones) or Line out.

The HQDAC supports two modes of operation. Class-D is a high efficiency, switching mode amplifier. The secondary Class-AB is a linear amplifier and consumes more power.

4.10.4 Standard I²S/PCM interface

FSC-BT1058 provides a standard I²S/PCM interface capable of operating at up to a 384 kHz sample rate.

The I²S/PCM port is highly configurable with alternate PCM modes, and has the following options:

SYNC edge position selectable to align with start of channel data (PCM mode), or 1 clock before start of channel data (I²S mode)

- Master (generate CLK and SYNC) or Slave (receive CLK and SYNC) (PCM/IM m)
- SYNC polarity (PCM)
- Long or short SYNC (PCM)
- Left or right justification (PCM/Isla)
- Sign extension / zero pad (PCM)
- Optional tri-state at end of word (PCM)
- Optional invert of clock (PCM/ Id)
- > 13/16/24-bit per sample (PCM/ IId
- Up to four slots per frame (PCM)

Table 4-3: Alternative functions of the digital audio bus interface on the PCM interface

I ² S Pin	PCM function	I	Description	
I2S _ DIN /SDIN/ADCDAT	PCM _DIN		Data intput	
I2S _DOUT / SDOUT / DACDAT	PCM_DOUT	[Data output	
I2S_FS / WS / LRCLK	PCM_SYNC		Word sync	
I2S _CLK / SCK / BCLK	PCM_CLK		Bit clock	
I2S_CLK I2S_FS I2S_FS I2S_D I2S_D ISB Sample 0 Isample 1 I2S_D Isample 0 I2S_D Isample 0 </td <td>LSB MSB</td> <td>I</td> <td></td> <td>Sample 2 Left Channel</td>	LSB MSB	I		Sample 2 Left Channel
Parameter	Min	Туре	Max	Unit
thsclksynch - Hold time from PCM_CLK low to PCM_SYNC	high 5	-	-	ns
t _{susclksynch} - Set-up time for PCM_SYNC high to PCM_CLK		-	-	ns
t _{supinsclkl} - Set-up time for PCM_IN valid to PCM_CLK low		-	-	ns
the second se	5	-	-	ns

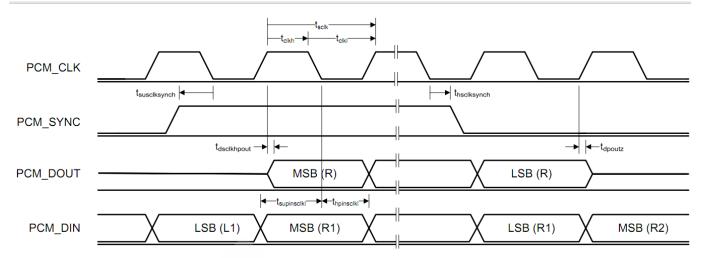


Figure 4-11:Digital audio interface slave timing

Table 4-5:I²S/PCM master mode timing parameters, WS and SCK as outputs

Parameter	Min	Туре	Max	Unit
t _{dmclksynch} - Delay time from PCM_CLK high to PCM_SYNC high	-	-	20	ns
t _{dmclkpout} - Delay time from PCM_CLK high to valid PCM_OUT	-		20	ns
t _{dmclkhsyncl} -Delay time from PCM_CLK high to PCM_SYNC low	-	-	20	ns
t dmclkhpoutz -Delay time from PCM_CLK high to PCM_OUT high impedance	-	-	20	ns
t _{supincIkI} - Set-up time for PCM_IN valid to PCM_CLK low	-	-	20	ns
t _{hpinclkl} - Hold time for PCM_CLK low to PCM_IN invalid	0	-	-	ns

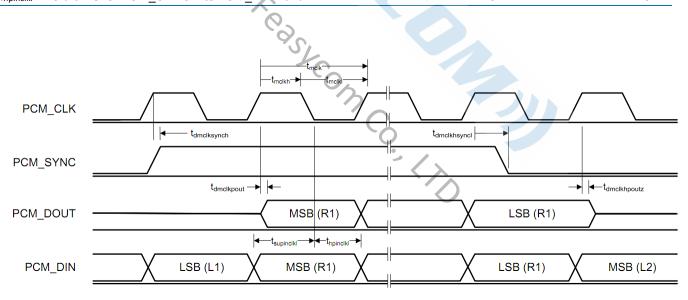
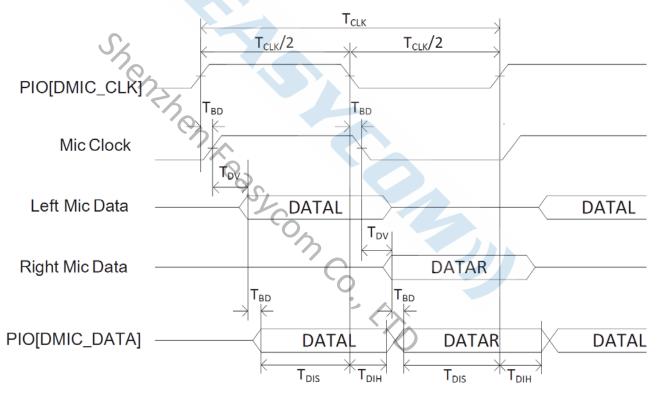
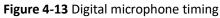


Figure 4-12: Digital audio interface master timing




4.10.5 Digital audio interfaces

Audio digital interfaces include:

- □ Digital microphone inputs
- □ Standard I²S/PCM interface
- □ SPDIF interface
- □ Audio MCLK
- Digital microphone inputs

Up to ten channels of digital microphone inputs are accommodated, organized into five pairs. Many digital microphones can be set up to allow two microphones to share a single data line. As depicted in **Figure 4-13**, the FSC-BT1058 supports this mode by transmitting data from one microphone on the rising clock edge and from the other on the falling edge, while otherwise keeping their outputs in a tri-state. The system can generate eight clock frequencies for digital microphones, configurable at 500 kHz, 571 kHz, 666 kHz, 800 kHz, 1 MHz, 1.33 MHz, 2 MHz, and 4 MHz. The digital microphone function can be assigned to PIOs; for more details, refer to the Related Information section.

Table 4-6 Digital	microphone	e timing paramete	rs

Min	Тур	Max	Unit	Description
250	-	2000	ns	Clock period
-	-	-	ns	One-way routing delay from/to
				FSC-BT1058 to/ from the digital
				microphone IC
-	-	-	ns	Delay internal to the digital microphone
				from the edge of the IC clock to valid data
				presented by the digital microphone
		250 -	250 - 2000	250 - 2000 ns ns

TDIS	40	-	-	ns	Data Input Setup time
TDIH	0	-	-	ns	Data Input Hold time

4.11 SPDIF interface

SPDIF (IEC 60958) is a digital audio interface that utilizes biphase coding to reduce the DC content of the transmitted signal, allowing the receiver to extract clock information. The FSC-BT1058 supports up to two configurable SPDIF interfaces for input or output. These interfaces adhere to standards such as IEC 60958-1, IEC 60958-3, IEC 60958-4, and AES/EBU. Signals are transmitted via PIO and typically require external line drivers (for 75 Ω cabling) or optical transceivers ('Toslink'). Any PIO can be designated for SPDIF functionality.

4.12 Audio MCLK

FSC-BT1058 has two internal clock sources for audio interfaces:

A standard 120 MHz clock (divided down).

■ An independent PLL (MPLL) that is usable as an alternate MCLK frequency clock source for the I²S/PCM and SPDIF ports. When it cannot be generated directly from the 120 MHz clock, the MPLL can be output on a PIO for use by an external codec where low jitter I²S/PCM and SPDIF performance is required. **Table 4-7** lists the output frequencies that the MPLL can generate. The MPLL increases system power consumption and therefore only used when necessary.

Table 4-7 Audio MCLK clock output frequencies

	Sample rate (kHz)						
MCLK frequency (Hz)	MCLK ÷ 128	MCLK ÷ 256	MCLK ÷ 384				
1,024,000	8	-	-				
2,048,000	16	8	-				
3,074,000	24	-	8				
4,096,000	32	16	-				
5,644,800	44.1	-	-				
6,144,000	48	24	16				
8,192,000	-	32	-				
9,216,000	-	-	24				
11,289,600	88.2	44.1	-				
12,288,000	96	48	32				
16,934,400	-	-	44.1				
18,432,000		-	48				
22,579,200	176.4	88.2	-				
24,576,000	192	96	-				
33,868,800	-	-	88.2				
36,864,000	う、 -	-	96				
45,158,400	- 75	176.4	-				
49,152,000	384	192	-				
67,737,600	~		176.4				
73,728,000	- 0		192				

4.13 Programming and Debug Interface

Important Note:

FSC-BT1058 provides a debug (Pin10~12) interface for programming, updata, configuring, and debugging the FSC-BT1058.

Feasycom provides development and production tools to communicate over the SPI from a PC, although a level translator circuit is often required. All are available from Feasycom.

5. ELECTRICAL CHARACTERISTICS

5.1 Absolute Maximum Ratings

Below are the absolute maximum ratings for the supply voltage and voltages on digital and analog pins of the module. Exceeding these values may result in permanent damage.

The average PIO pin output current refers to the average current flowing through any one of the corresponding pins over a 100mS period. The total average PIO pin output current is the average current flowing through all corresponding pins over the same period. The maximum output current is the peak current flowing through any one of the corresponding pins.

Table 5-1: Absolute Maximum Rating

FSC-BT1058 Datasheet

Parameter	Min	Мах	Unit
5V (VCHG)	-0.4	+5.75V/6.50 ^(a)	V
BATTERY (LED 0,1,2)	-0.4	+4.8	V
BATTERY (VBAT_IN)	-0.4	+4.8	V
BATTERY (SYS_CTRL)	-0.4	+4.8	V
VDD_USB/3.3V_OUT	-0.4	+3.8	V
VDD_IO	-0.4	+3.6	V
Other terminal voltages	VSS-0.4	VDD+0.4e3.60 ^(b)	V
T _{ST} - Storage Temperature	-40	+85	°C

(a) Standard maximum input voltage is 5.75V, a 6.50V maximum depends on firmware version and implementation of over-temperature protection software, for more information contact Feasycom.

(b) VDD is the VDD_IO supply domain for this I/O. Voltage must not exceed 3.6 V on any I/O.

Recommended Operating Conditions 5.2

ihenzhe,

Sho.				
E.2. Decomposed of Operating Color	litions			
5.2 Recommended Operating Cond	ntions			
Table 5-2:Recommended Operating Conditions	C			
Parameter	Min	Туре	Max	Unit
5V (VCHG)	4.75 / 3.10 (a)	5	5.75 / 6.50 (b)	V
BATTERY (LED 0,1,2)	1.10	3.70	4.30	V
BATTERY (VBAT_IN)	2.8	3.3	4.30	V
BATTERY (SYS_CTRL)	0	3.3	4.25	V
VDD_USB/3.3V_OUT	2.8	3.3	3.5	V
VDD_IO	1.7	1.8	3.6	V
T _A - Operating Temperature	-40	20	+85	°C

(a) Minimum input voltage of 4.75V is required for full specification, regulator operates at reduced load current from3.1V

(b) Standard maximum input voltage is 5.75V, a 6.50V maximum depends on firmware version and implementation of over-temperature protection software, for more information contact Feasycom.

5.3 Input/output Terminal Characteristics

5.3.1 Digital

Table 5-3: DC Characteristics ($V_{DD} - V_{SS} = 3 \approx 3.6 \text{ V}, T_A = 25^{\circ}\text{C}$)

	5 01			
Parameter	Min	Туре	Max	Unit
Input Voltage				
V _{IL} - Standard IO Low level input voltage	-	-	0.25 x	V
			VDD_IO	
V _{IH} - Standard IO Low level input voltage	0.625 xVDD_IO	-	-	V
Tr/Tf	-	-	25	nS
Output Voltage				
V _{OL} - Low Level Output Voltage, I _{OL} =4mA	-	-	0.22 x	V
			VDD_PADS	
V _{OH} - High Level Output Voltage, I _{OH} =-4mA	0.75 x VDD_IO	-	-	V
Tr/Tf	-	-	5	nS
γ_{0}				
Input and Tristate Currents				
Strong pull-up	-150	-40	-10	uA
Strong pull-down	10	40	150	uA
Weak pull-up	-5	-1.0	-0.33	uA
Weak pull-down	0.33	1.0	5.0	uA
C I Input Capacitance	1.0	-	5.0	pF
	0			
	10			
5.3.2 Battery Charger	0			
Table 5-4: Battery Charger				
Table 9 41 Dattery charger				

Table 3-4. Dattery charger				
Parameter	Min	Туре	Max	Unit
Battery Charger	<			
Input voltage, VCHG 4	.75 / 3.10(a)	5.00	5.75 / 6.50(b)	V

(a)Reduced specification from 3.1V to 4.75V. Full specification >4.75V.

(b) Standard maximum input voltage is 5.75V, a 6.50V maximum depends on firmware version and implementation of over-temperature protection software, for more information contact Feasycom.

Trickle Charge Mode				
V _{PRE} threshold (rising)	2.0	2.1	2.2	V
V _{PRE} threshold (falling)	1.9	2.0	2.1	V
Trickle charge current:	1		50	mA
VCHG: 4.25 V to 6.5 V				
VBAT: 0 V to 2.2 V				

FSC-BT1058 Datasheet

Fast Charge Mode					
Charge current during constant	Max,	194	200	206	mA
current mode, I _{fast}	headroom >0.55V	-	10	-	mA
	Min, headroom >0.55V				
Reduced headroom charge	Mid, headroom =0.15V	50	-	100	%
current, as a percentage of I _{fast}					
Charge current step size		-	10	-	mA
V _{float} threshold, calibrated		4.18	4.20	4.22	V
Charge termination current I_{term} , a	as percentage of I _{fast}	7	10	20	%
Standby Mode					
Voltage hysteresis on VBAT_IN, V	nyst	100	-	150	mV
Error Charge Mode					
Headroom(a) error falling thresho (a) Headroom = VCHG – VBAT_IN	bld	-	50	-	mV
(a) Headroom = VCHG – VBAT_IN	old	-	50	-	mV
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB	nzho	- Min		- Max	
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter	nzhon	- Min 3.10	50 Type 3.30	- Max 3.60	mV Unit
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation	nzhon		Туре		Unit
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold	nzhon		Туре	3.60	Unit V
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold V _{IL} - input logic level low	r on(internal)	3.10	Туре		Unit V V
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold	r on(internal)		Туре	3.60	Unit V
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold VIL - input logic level low VIH - input logic level high	r on(internal)	3.10	Туре	3.60	Unit V V
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold VIL - input logic level low VIH - input logic level high Output Voltage Levels to Correct	r on(internal)	3.10	Туре	3.60	Unit V V
(a) Headroom = VCHG – VBAT_IN 5.3.3 USB Table 5-5:USB Parameter 3V3_USB for correct USB operation Input Threshold V _{IL} - input logic level low V _{IH} - input logic level high	r on(internal)	3.10	Туре	3.60	Unit V V

5.3.4 LED Driver Pads

Table 5-6:LED Driver Pads

Parameter	Min	Туре	Max	Unit
Current, I _{PAD} - High impedance state	-	-	5	uA
Current, IPAD -Current sink state	-	-	50	mA
LED pad voltage, $V_{PAD}I_{PAD} = 10mA$	-	-	0.55	V
V _{OL} output logic level low ^a	-	0	-	V
V _{OH} output logic level high ^a	-	0.8	-	V
VIL input logic level low	-	-	0.4	V

V _{IH} input logic level high	1	-	-	V

a LED output port is open-drain and requires a pull-up

5.4 **Stereo Codec**

5.4.1 Analog to Digital Converter

Table 5-7: Analog to Digital Converter (single-ended/differential audio input)

Parameter	Ccnditions		Min	Туре	Max	Unit
Resolution	-		-	-	24	Bits
Output Sample Rate,	-		8	-	96	KHz
F _{sample}						
Input level			-		2.4	V _{pk-pk}
Input impedance	0 dB to 24 dB analog gain			20		ΚΩ
	27 dB to 39 dB analog gain			10		kΩ
SNR	f _{in} = 1kHz	Single	-	99	-	dBA
	48KHz	differential	-	99	-	dBA
	A-Weighted					
	B/W = 20 Hz to 20 kHz					
	2.4V _{pk-pk} input (OdB gain)					
THD+N	f _{in} = 1kHz	Single	-	-99	-	dB
	48KHz	differential	-	-91	-	dB
	2.4V _{pk-pk} input(OdB gain)					
	B/W = 20 Hz to 20 kHz					
Digital gain	Digital gain resolution = 1/32		-24	-	21.5	dB
Analog gain	3dB steps	0	-	-	39	dB
Stereo separation		7	80			dB
(crosstalk)		C				
		0.	<u>^</u>			
		<				
5.4.1 Digital to	Analog Converter					

Digital to Analog Converter 5.4.1

 Table 5-8:Digital to Analog Converter (differential audio output)

Parameter	Ccndi	tions		Min	Туре	Max	Unit
Resolution	-			-	-	24	Bits
Input Sample Rate,	-			8	-	192	KHz
F sample							
Output Power(no	0 dBFS, 10K Ω load					1000	mV
LPF)							
SNR	f _{in} = 1kHz	F sample	Load				
	B/W = 20Hz->20KHz	48kHz	10KΩ	-	105	-	dBA
	A-Weighted						
	OdBFS input						
THD+N	f _{in} = 1kHz	F sample	Load	-			

	B/W = 20Hz->20kHz	48kHz	10ΚΩ	-	-88	-	dB
	OdBFS input						
Digital gain	Digital gain resolution = 1	1/32		-24	-	21.5	dB
Stereo separation				80			dB
(crosstalk)							

Auxiliary ADC 5.5

Table 5-9: Auxiliary ADC

Parameter	Min	Туре	Мах	Unit		
Resolution	-	-	10	Bits		
Input voltage range(a)	0		1.854	V		
Accuracy INL	-3	-	3	LSB		
(Guaranteed monotonic) DHL	-1	-	2	LSB		
Offset	-1	-	1	LSB		
Gain error	-1	-	1	%		
Input bandwidth	-	100	-	KHz		
Conversion time		10		uS		
Conversion time 10 uS (a) LSB size = 1.854V/1023 5.6 Microphone bias generator Table 5-10:Microphone bias generator						
Parameter	Min	Туре	Max	Unit		
Output voltage (Tunable, step = 0.1 V)	1.5		2.1	V		

Microphone bias generator 5.6

Table 5-10: Microphone bias generator

E.	SLC.			
5.6 Microphone bias generator	~Om			
Table 5-10: Microphone bias generator	C			
Parameter	Min	Туре	Max	Unit
Output voltage (Tunable, step = 0.1 V)	1.5		2.1	V
Output current capability	0.07		3.0	mA
DC accuracy	-60	<u> </u>	60	mV
Crosstalk Between Microphones	-	80	-	dB
(Using recommended application circuit)				
Load capacitance (From parasitic PCB routing and	-	-	0.1	nF
package				

MSL & ESD Protection 6.

Table 6-1: MSL and ESD

Parameter	Class	Max Rating
MSL grade(with JEDEC J-STD-020)		MSL 3

Human Body Model Contact Discharge per	2	±2kV(all pins)
ANSI/ESDA/JEDEC JS-001		
Charged Device Model Contact Discharge per	Ш	500V (all pins)
JEDEC/EIA JESD22-C101		

6.1 USB Electrostatic Discharge Immunity

FSC-BT1058 has integrated ESD protection on the USB_DP and USB_DN pins as detailed in IEC 61000-4-2.

IEC 61000-4-2 Level	ESD Test Voltage (Positive and Negative)	IEC 61000-4-2 Classification	Comments
1	2kV contact / 2kV air	Class 1	Normal performance within specification limits
2	4kV contact / 4kV air	Class 1	Normal performance within specification limits
3	6kV contact / 8kV air	Class 2 or class 3	Temporary degradation or operator intervention required
4	8kV contact / 15kV air	Class 2 or class 3	Temporary degradation or operator intervention required
	Chihen		

 Table 6-2:USB Electrostatic Discharge Protection Level

7. RECOMMENDED TEMPERATURE REFLOW PROFILE

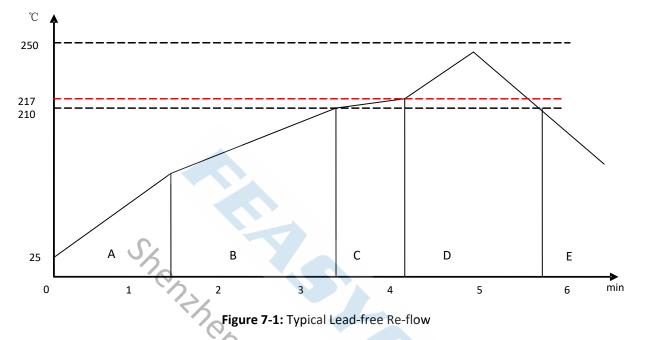
Prior to reflow, it is crucial to ensure that the modules are properly packaged to prevent moisture absorption. The new packages are equipped with desiccants to absorb moisture, and a humidity indicator card is included to indicate the moisture level maintained during storage and shipment. If the card indicates the need to bake the units, please refer to the instructions specified by IPC/JEDEC J-STD-033 and follow them accordingly. It is important to adhere to these instructions to prevent any potential moisture-related issues during the reflow process.

Note: The shipping tray should not be exposed to temperatures exceeding 65°C. If baking is necessary at higher temperatures indicated below, it is essential to remove the modules from the shipping tray. This precaution is important to avoid any potential damage or deformation to the tray caused by excessive heat.

Any module that exceeds its floor life but has not yet been manufactured should be repackaged by using new desiccants and humidity indicator cards. For devices with a Moisture Sensitivity Level (MSL) of 3, the floor life is 168 hours in an environment with $30^{\circ}C/60\%$ RH.

Floor life refers to the maximum allowable time a moisture-sensitive device can be exposed to ambient conditions without risking moisture absorption and potential damage during soldering.

MSL	125°C Baking Temp.		90°C/≤ 5%RH Baking Temp.		40°C/ ≤ 5%RH Baking Temp.	
	Saturated @	Floor Life Limit	Saturated @	Floor Life Limit	Saturated@	Floor Life Limit
	30°C/85%	+ 72 hours @	30°C/85%	+ 72 hours @	30°C/85%	+ 72 hours @
		30°C/60%		30°C/60%		30°C/60%
3	9 hours	7 hours	33 hours	23 hours	13 days	9 days


Table 7-1: Recommended baking times and temperatures

Feasycom surface mount modules are designed to facilitate easy manufacturing, including reflow soldering onto a PCB.

However, it is the customer's responsibility to select the suitable solder paste and ensure that the oven temperatures during reflow meet the requirements specified by the solder paste manufacturer. Feasycom surface mount modules comply with the J-STD-020D1 standards for reflow temperatures.

The soldering profile may vary depending on different parameters, requiring a specific setup for each application. The data provided here is only intended as a general guideline for solder reflow and should be used as a reference.

Pre-heat zone (A) — This zone gradually increases the temperature at a controlled rate, usually ranging from 0.5 to 2 °C/s. Its purpose is to preheat the PCB board and components to a temperature of 120-150 °C. This stage is necessary to ensure the even distribution of heat across the PCB board and to remove any remaining solvents completely, minimizing the risk of heat shock to the components.

Equilibrium Zone 1 (B) — In this stage, the flux undergoes softening and uniformly covers the solder particles, as well as spreading over the PCB board. This process helps prevent re-oxidation of the solder particles. Additionally, as the temperature rises and the flux liquefies, each activator and rosin component become activated. They work together to eliminate any oxide film formed on the surface of the solder particles and PCB board. For this zone, it is recommended to maintain a temperature range of 150 to 210 °C for a duration of 60 to 120 seconds.

Equilibrium Zone 2 (C) (optional) — To address the issue of upright components, it is recommended to maintain a temperature range of 210 to 217 °C for a duration of approximately 20 to 30 seconds. This will help ensure proper soldering and alignment of the components on the PCB board.

Reflow Zone (D) — The profile in the figure is designed for Sn/Ag3.0/Cu0.5. It can be a reference for other lead-free solder. The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint. The recommended peak temperature (Tp) is 230 ~ 250 °C. The soldering time should be 30 to 90 second when the temperature is above 217 °C.

Cooling Zone (E) — The cooling ate should be fast, to keep the solder grains small which will give a longer-lasting joint. **Typical cooling rate should be 4** °C.

8. MECHANICAL DETAILS

8.1 Mechanical Details

- Dimension: 13mm(W) x 26.9mm(L) x 2.2mm(H) Tolerance: ±0.2mm
- Module size: 13mm X 26.9mm Tolerance: ±0.2mm
- Pad size: 1.6mmX0.6mm Tolerance: ±0.2mm
- Pad pitch: 1.0mm Tolerance: ±0.1mm

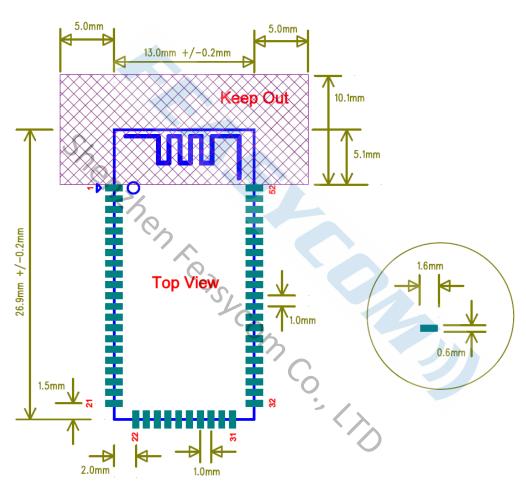


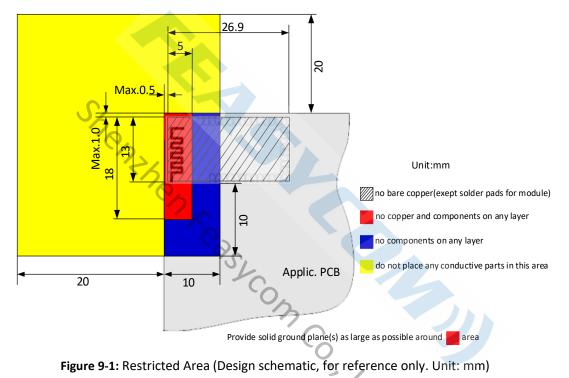
Figure 8-1: FSC-BT1058 footprint Layout Guide (Top View)

9. HARDWARE INTEGRATION SUGGESTIONS

9.1 Soldering Recommendations

FSC-BT1058 is compatible with the industrial standard reflow profile for Pb-free solders, which varies based on factors like the thermal mass of the populated PCB, heat transfer efficiency of the oven, and the type of solder paste. It is recommended to consult the datasheet of the specific solder paste for profile configurations.

Feasycom offers the following soldering recommendations to ensure dependable solder joints and optimal module performance. However, as the ideal profile may differ depending on the unique process and layout, these suggestions



should be viewed as initial guidance, and a thorough analysis of the scenario is advised.

9.2 Layout Guidelines(Internal Antenna)

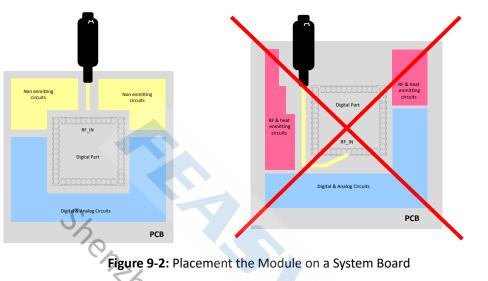
Adherence to sound layout practices is highly recommended to guarantee the module's correct operation. Placing copper or any metal in close proximity to the antenna can detrimentally affect its performance by interfering with the matching properties. To avoid radiation issues, refrain from using a metal shield with the module. It is advisable to incorporate grounding vias, spaced no more than 3 mm apart, along the periphery of grounding areas to inhibit RF penetration within the PCB and prevent unintended resonator formation. Furthermore, ensure that GND vias are evenly dispersed along all edges of the PCB.

In the restricted area where the on-board antenna is located, the motherboard should not have any bare conductors or vias. This area is not covered by stop mask print, so no copper (planes, traces, or vias) should be present in this area to avoid mismatching with the on-board antenna.

The provided recommendations target the prevention of EMC issues stemming from the RF component of the module. It is crucial to recognize the uniqueness of each design, with this list not encompassing all fundamental design principles, such as mitigating capacitive coupling between signal lines. Moreover, it is essential to address potential

To address EMC concerns effectively, it is recommended to keep the return paths of signal lines as short as feasible. For instance, when a signal traverses a via to an inner layer, always use ground vias around it. These ground vias should be positioned closely and symmetrically around the signal vias. Routing of delicate signals is best done within the inner layers of the PCB. Sensitive traces should be flanked by ground planes both above and below the line. If this arrangement is not viable, ensure a short return path by exploring alternative techniques, like situating a ground line adjacent to the signal line.

9.3 Layout Guidelines(External Antenna)


challenges posed by digital signals in the design process.

The placement and layout of the PCB are vital in enhancing the performance of modules without on-board antenna designs. The trace linking the antenna port of the module to an external antenna should maintain a characteristic

impedance of 50Ω and be kept as brief as feasible to prevent interference with the module's transceiver. When situating the external antenna and RF-IN port of the module, it is crucial to isolate them from potential sources of noise and digital traces. To reduce return loss and attain improved impedance matching, a matching network might be necessary between the external antenna and RF-IN port.

For optimal RF performance, it is advised to distinctly segregate the RF critical circuits of the module from any digital circuits on the system board. The RF circuits within the module are positioned in proximity to the antenna port. Therefore, when placing the module, the digital part of the module should face the digital part of the system PCB.

9.3.1 Antenna Connection and Grounding Plane Design

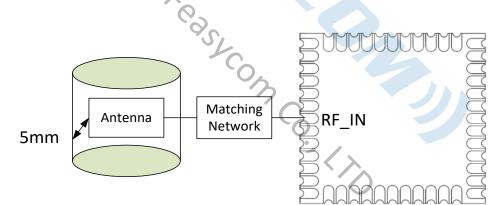


Figure 9-3: Leave 5mm Clearance Space from the Antenna

General design recommendations are:

- The length of the trace or connection line should be kept as short as possible.
- Distance between connection and ground area on the top layer should at least be as large as the dielectric thickness.
- Routing the RF close to digital sections of the system board should be avoided.
- To reduce signal reflections, sharp angles in the routing of the micro strip line should be avoided. Chamfers or fillets are preferred for rectangular routing; 45-degree routing is preferred over Manhattan style 90-degree routing.

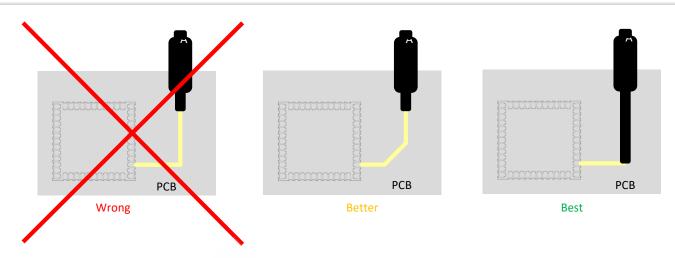


Figure 9-4: Recommended Trace Connects Antenna and the Module

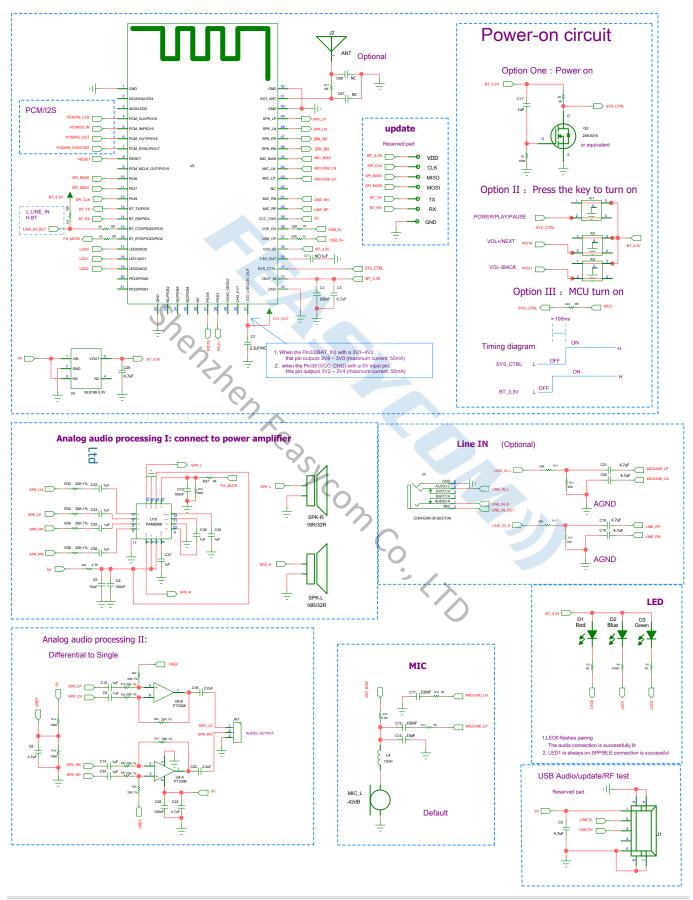
- Routing of the RF-connection underneath the module should be avoided. The distance of the micro strip line to the 2 ground plane on the bottom side of the receiver is very small and has huge tolerances. Therefore, the impedance of this part of the trace cannot be controlled.
- Use as many vias as possible to connect the ground planes. 1

PRODUCT PACKAGING INFORMATION 10.

DefaultPacking 10.1

- a, Vacuum tray
- b, Tray Dimension: 190mm * 175mm

* If any packaging other than the package mentioned above is required, please confirm the packaging size again.


* Packing: 1000pcs per carton (Minimum packing quantity).

* The outer packing size provided above is for reference purposes only. For the actual dimensions of the product's pack aging, please refer to the packaging of the actual goods.

Figure 10-2: Packing Box

11. APPLICATION SCHEMATIC

